
The DSOL simulation suite

Enabling multi-formalism simulation in a

distributed context

The DSOL simulation suite

Enabling multi-formalism simulation in a

distributed context

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op dinsdag 15 november 2005 om 10.30 uur

door

Peter Hubertus Maria JACOBS

bestuurskundig ingenieur

geboren te Utrecht.

Dit proefschrift is goedgekeurd door de promotoren:
Prof. dr. H.G. Sol
Prof. dr. ir. A. Verbraeck

Samenstelling promotiecommissie:
Rector Magnificus, voorzitter
Prof. dr. H.G. Sol, Technische Universiteit Delft, promotor
Prof. dr. ir. A. Verbraeck, University of Maryland, USA, promotor
Prof. dr. R.W. Wagenaar, Technische Universiteit Delft
Prof. dr. S. Boyson, University of Maryland, USA
Prof. dr. R.E. Nance, Virginia Tech, USA
Prof. dr. ir. J.J.M. Evers, Technische Universiteit Delft
Prof. dr. ir. J.C. Wortmann, Rijksuniversiteit Groningen

Download this thesis from http://www.peter-jacobs.com/documents/thesis.pdf

Download DSOL from http://www.simulation.tudelft.nl

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, Den Haag
Jacobs, Peter Hubertus Maria
The DSOL simulation suite/
Peter Hubertus Maria Jacobs - [S.l. : s.n.].
Proefschrift Delft. - Met Index, lit. opg., Nederlandse samenvatting
ISBN-10: 90-9019835-0
ISBN-13: 978-90-9019835-4
NUR 992
Trefw.: decision support, simulation, Java, object-orientation.

Cover design: Bas Uildriks

Printing: Copie Sjop, Delft, the Netherlands - http://www.copie-sjop.nl

English editor: Miranda Aldham-Breary M.Sc. P.G.C.E.

Copyright c©2005 by P.H.M. Jacobs
All rights reserved worldwide. No part of this thesis may
be copied or sold without the written permission of the author.

to my family.

The applications presented in this book have been included for their instructional value.

They have been tested with care, but are not guaranteed for any particular purpose.

The author does not offer any warranties or representations, nor does he accept any

liabilities with respect to them.

Contents

1. EFFECTIVE DECISION SUPPORT 1

1.1 Introduction 1
1.2 Human decision making and problem solving 2
1.3 Simulation as a method of inquiry 3
1.4 Effectiveness of decision support systems 5
1.5 A generation of systems supporting substantive rationality 5
1.6 A simulation suite to support bounded rationality 6

1.6.1 Studio based decision making 6
1.6.2 Service oriented computing 7
1.6.3 Research question 8

1.7 Research approach 9
1.7.1 Philosophy 9
1.7.2 Strategy 10
1.7.3 Instruments 11

1.8 Research outline 13

2. SIMULATION IN PRACTICE 15

2.1 Case 1: The net-centric supply chain 15
2.1.1 Introduction 15
2.1.2 Relevance 17
2.1.3 Conceptualization 18
2.1.4 Specification 19
2.1.5 Conclusions 23

2.2 Case 2: Controlling automated guided vehicles 26
2.2.1 Introduction 26
2.2.2 Relevance 27
2.2.3 Conceptualization 27
2.2.4 Specification 29
2.2.5 Conclusions 32

2.3 Research question revised 33

3. SYSTEMS ENGINEERING PRINCIPLES 35

3.1 Systems engineering 35
3.2 Principles for system design 37
3.3 Object-oriented system description 38
3.4 Principles for object-oriented modeling 40
3.5 Summary 46

4. SIMULATION AS A METHOD OF INQUIRY 47

4.1 Actors and activities in a simulation study 47
4.2 A framework for simulation 48
4.3 Multi-formalism modeling 49
4.4 Three classical formalisms for discrete event simulation 53
4.5 Experimental design 55
4.6 Activities involved in a simulation study 56
4.7 Requirements for a simulation suite 57
4.8 Requirements worked out 58

4.8.1 Usefulness 59
4.8.2 Usability 60
4.8.3 Usage 61

4.9 Summary 62

5. DESIGNING A SIMULATION SUITE 63

5.1 Distribution forms the core of DSOL 63
5.2 Choosing an object-oriented programming language 64
5.3 An overview of Java based simulation environments 65
5.4 Overview of the DSOL simulation suite 66
5.5 Specification of distributed asynchronous communication 70
5.6 Specification of formalisms 74

5.6.1 Discrete event formalism in detail 80
5.6.2 Process interaction formalism in detail 81
5.6.3 Differential equation formalism in detail 87

5.7 Specification of statistical distribution functions 88
5.7.1 Pseudo random number generators in detail 88
5.7.2 Statistical distributions in detail 91

5.8 Specification of output statistics 93
5.9 Specification of animation 95
5.10 Summary 96

6. VERIFICATION AND TESTING OF DSOL 99

6.1 Expert verification through the SNE comparisons 99
6.1.1 Comparison 1: lithium-cluster dynamics 101
6.1.2 Comparison 2: flexible assembly system 106
6.1.3 Comparison 3: generalized class-E amplifier 111
6.1.4 Comparison 6: emergency department 116
6.1.5 General conclusions on the SNE comparisons 124

6.2 Testing and analyzing the DSOL suite 126
6.2.1 Code formatting and style checking 126
6.2.2 Unit testing 128
6.2.3 Profiling 128

6.3 Conclusions 130

7. CASE: EMULATION WITH DSOL 133

7.1 Introduction 133
7.1.1 60m3 of concrete floors on an automated guided vehicle 134
7.1.2 The importance of emulation in the design of realtime control136
7.1.3 Expectations for the case 136
7.1.4 Requirement analysis 137

7.2 Conceptualization 138
7.2.1 The conceptual model of the control system 139
7.2.2 The conceptual model of the controlled system 140
7.2.3 The model-PLC interface 140

7.3 Specification 144
7.3.1 Modbus communication with DSOL 144
7.3.2 The specification of emulation components 144
7.3.3 The specification of the DSOL-PLC communication 148
7.3.4 Experimentation 149

7.4 Conclusions 149

8. CASE: FLIGHT SCHEDULING AT KLM 153

8.1 Introduction 153
8.1.1 The plan acceptance process 154
8.1.2 Why a renewed specification in DSOL? 156

8.2 Conceptualization 157
8.3 Specification 161

8.3.1 Input specification 161
8.3.2 Output specification 164

8.4 Conclusions 165

9. EPILOGUE 169

9.1 A review of research questions 169
9.2 The DSOL user community 172
9.3 Recommendations for further research 173

Appendix 175
A Time advancing functions of simulators 177
B The specification of the port example 181
C Java Naming and Directory Interface 184
D DSOL experiment file 185
E JUnit test of DSOL’s discrete event list 186

Index 199
Author index 200
Subject index 203

ACKNOWLEDGMENTS

For the realization of this thesis I am indebted to many people. In the first place
I want to thank Henk Sol for never being satisfied, for his inspiring advice, and
for reminding me, again and again, that I should concentrate on my dissertation.
A second word of acknowledgment must be directed to Alexander Verbraeck for
inspiring me to start this Ph.D. research, for being an equally enthusiastic Java
programmer, and for inspiring me not to only concentrate on my dissertation.
Both promotors formed an excellent and pleasant team to work for and with.
I would like to thank Niels Lang and Stijn-Pieter van Houten for all the discussions,
and above all, for their valuable contributions to the DSOL suite; many thanks!
I am greatfull to the US Department of Defense, Dycore, Frog Navigation Sys-
tems, KLM Royal Dutch Airlines and TBA Nederland b.v. for their willingness to
provide the real life environments in which parts of this research were conducted.
I truly hope that the work presented in this thesis helps them in their challenging
decision making situations.
I would like to thank Miranda Aldham-Breardy for improving my English. I
would like to thank Wieke Bockstael-Blok, Roy Chin and Tamrat Tewoldeberhan
for reading the thesis and providing me with valueable feedback.
I want to thank Rutger Heeren and Matthijs Visser for providing me with beers
even when I knew it would be better to be asleep. I want to thank Bas Uildriks,
Cinco Veldman and Louis Veldman for designing and printing this beautiful thesis.
Most of all I want to thank my family for all their love and support and Marieke
for interrupting her journey and attending the defense.

Peter H.M. Jacobs
Delft, November 2005

1. EFFECTIVE DECISION SUPPORT

1.1 Introduction

In a recent survey by Barr (2003) it was reported that, while 66 percent of man-
agers believe decision support systems are critical to analyze operational business
processes, only 40 percent actually uses them. In this thesis we will argue that a
new paradigm is needed for the design of decision support systems to support un-
structured decisions effectively and thus to support human decision making with
information technology. This is extra important in a digitally connected world in
which decision makers are continuously overloaded with an unrestricted amount
of information, and where support tools are available any place, any time.
In their book Rehearsing the future, Keen and Sol (2005) present an overview of The focus of next

generation decision
support should be...

decision support, viewing it as a lens, an invitation and a field of practice. The
focus of this lens is to enhance executive decision making using a new generation
of decision support technology. Keen and Sol argue that decision support has two
practical goals. One, to support technology professionals, consultants and special-
ist to leverage their contribution to decision-makers through effective design and
use of models, information systems and tools. Two, to support executives in pub-
lic, private and public-private organizational contexts to improve the effectiveness
of their decision process as it builds their confidence in, and their comfort with
using, appropriate models, systems and tools.
As will become apparent throughout the remainder of this chapter, we underwrite
the goal expressed in Rehearsing the future that the focus of next generation de-
cision support should be on the support of procedural, or bounded rationality ...on the support

of procedural, or
bounded rationality,
which is...

to improve the effectiveness and efficiency of problem solving in a multiple actor,
multiple view environment.
Human decision making forms the central theme of this chapter. First the dis-
tinction between procedural and substantive decision making is considered. Then
simulation is introduced as the method of inquiry to be supported. A framework
for expressing the effectiveness of decision support tools is presented in section 1.4.
The problem statement for the research is discussed in section 1.5 after which the
research question is presented in section 1.6. We conclude this chapter with our
research strategy and thesis outline.

1.2 Human decision making and problem solving

More than a century ago, Cournot made some preliminary remarks on the role
of mathematics when applied to the administrative sciences. Cournot (1838) saw
that where a market is supplied by only a few producers, the notion of profit-
maximization is ill-defined. The rational choice for each actor depends on the
choices made by the other actors; no actor can choose without making assumptions
about how other actors will make their choices.
Although this notion was published in 1838, Simon (1976) states that it was only
after the second world war that classical economic theory was supplemented by
a perspective on economics that was based on procedural, or bounded, rational-
ity . Classical economic theory rests on two fundamental assumptions. One, the
economic actor has a well-defined particular goal. Two, the economic actor is
substantively rational , which by definition stipulates that the rationality of the
behavior of the actor depends on one aspect only: his or her goal.
Procedural rationality assumes that the concept of rationality is synonymous with
the peculiar thinking process called reasoning (James, 1890). According to Simon,
behavior is procedurally rational when it is the outcome of appropriate delib-...the outcome of

appropriate
deliberation.

eration. Accepting procedural rational behavior therefore makes the process of
problem solving, or decision making, not a theory of best solutions, of substan-
tive rationality, but a theory of efficient activities, i.e. to find good, or accepted,
solutions (Simon, 1976). Decisions become a result of satisficing instead of opti-
mization.
In addition to the ill-defined goals observed by Cournot (1838), Simon (1955)
describes several other factors that diminish our substantive rationality and cause
Man’s decisions to be based on procedural rational behavior.

• Man’s computational efficiency: no processing equipment exists, for most
problems faced by human decision makers, that will enable them to discover
the substantive optimal solution, even when optimal is well defined.

• Substantive rational decision makers do not take the view of reaching a
satisficing level . A typical example occurs when a decision maker receives a
sequence of offers, and must decide whether to accept the highest offer before
the next one is received. In such a case a decision maker reaches a level of
acceptance or satisficing .

• Another reason for procedural rationality is the cost of information gathering.
Simon argues that whenever this process incurs costs, the optimum is likely
to be affected by the process.

• The theories on substantive rational decision making enforce a scalar goal, or
value function. Simon points out that this value function might be a vector

2

function in the case of group decision with a pay-off function consisting
of the individual values or in cases where values do not have a common
denominator 1.

The challenge now becomes to support the human realities of decision making, The challenge be-
comes to support
the human realities
of decision making
by supporting N
decision makers with
M perceptions, P
constraints and Q
goals.

or problem solving, by supporting N decision makers with M perceptions, P con-
straints and Q goals. In this support we distinguish the process, or method, from
tools. We will introduce simulation as the method of inquiry to be supported with
appropriate decision support tools, i.e. simulation tools.

1.3 Simulation as a method of inquiry

A systems view of problem solving is shown in figure 1.1 and the four elements
which form the different stages of this process are delineated. The arrows in figure
1.1 are used to emphasize the different activities.

perceived problem empirical model

solution

conceptual model

im
plem

entation

co
nc

ep
tu

al
iz
at
io
n

specification

so
lu
tio

n
fin

di
ng

correspondence check

consistency check

Fig. 1.1: A systems view of problem solving (Mitroff et al., 1974)

The four stages of the process of problem solving are the perceived problem, the
conceptual model , in which the variables, that will be used to specify the nature

1 Alternatives are valued based upon more than one attribute, e.g. price and age.

EFFECTIVE DECISION SUPPORT 3

of the problem in broad terms, are defined, the empirical model in which the
conceptual model in terms of the system under study is specified, and the solution.
The activities illustrated in figure 1.1 are conceptualization, specification, solutionA specific combination

of activities leads to a
process of problem

solving.

finding, implementation, consistency check and correspondence check. A specific
combination of these activities leads to a model cycle, i.e. a process of problem
solving.
Perhaps the most important, and yet in many ways the most subtle fact presented
in this figure is that, while all model cycles have a beginning, not all beginnings
are the same (Nutt, 2002; Mitroff et al., 1974).
The set of activities that make up a specific process of problem solving can be sup-
ported with a structured set of instruments called an inquiry system (Sol, 1982).
This concept is an extension of the inquiring system as defined by Churchman
(1971); where Churchman focuses on activities and underlying philosophies, Sol
includes the instruments to support these activities. Churchman (1971) presentsChurchman clearly

advocates a Singerian
inquiring system for ill

structured problem
solving.

five philosophers and describes how each philosopher would design inquiring sys-
tems to understand the relations in systems under their consideration. Following
Churchman, the inquiring systems are listed below.

• Leibnitzian in which a purely formal, deductive philosophy is reflected.

• Lockean in which an experiential, inductive and empirical philosophy is re-
flected.

• Kantian in which both formal and empirical philosophies are reflected. The
Kantian inquiring system reconciles the Leibnitzian and Lockean inquiring
systems.

• Hegelian in which a synthetic philosophy is reflected. Using a Hegelian in-
quiring system researchers aim to invoke the strongest possible conflict on
any issue.

• Singerian in which a synthetic, interdisciplinary philosophy is reflected.

Churchman (1971) clearly advocates a Singerian inquiring system for ill-structuredSol presents
simulation as a

Singerian inquiry
system.

problem solving. Sol (1982) presents simulation as a Singerian inquiry system and
advocates that simulation is the preferred method of inquiry for ill-structured
problems. In the remainder of this thesis, simulation is defined as the process of
designing a model of a real system and conducting experiments with this model
for the purpose of either understanding the behavior of the system or of evaluating
various strategies for its operation (Shannon, 1975).

4

1.4 Effectiveness of decision support systems

A leading question in the development of decision support systems concerns the Effectiveness of DSS
is usefulness,...effectiveness of these systems. Keen and Sol (2005) argue that the effectiveness

can be expressed in a combination of three Us: usefulness, usability and usage.

• Usefulness. The usefulness of decision support tools expresses the value they
add to the decision making process. It thus relates to the analytic models,
embedded knowledge and information resource available in a model or tool.
Usefulness is commonly acquired through domain specific libraries, examples,
templates and support.

• Usability. Usability expresses the mesh between people, processes and tech- ...usability

nologies. Usability depends mainly on the interface between users and the
decision support technology. Usability expresses, among others, the respon-
siveness, flexibility, adaptability and ease of interaction and collaboration
with the system.

• Usage. Usage expresses the flexibility, adaptivity and suitability of DSSs for ...and usage.

organizational, technical, or social context. The main question concerning
usage is: How is the system embedded in the decision process?

According to Keen and Sol, traditional decision support tools do not place equal
emphasis on the three Us. While some provide extensive usefulness through de-
tailed embedded knowledge, they lack usability due to severe platform constraints,
i.e. they are written for one particular operating system, or they do not provide
clear interfaces to external information resources: substantive rationality underlies
their design.

1.5 A generation of systems supporting substantive rationality

Based on the evaluations of commercially available simulation environments by Where a simulation
environment should
support a synthetic,
interdisciplinary
approach to problem
solving,...

Hlupic (1993); Tewoldeberhan et al. (2002), we conclude that in most of the com-
mercially available simulation environments only one actor can use a simulation
model, designed by one simulation model designer, to carry out one experiment.
Most simulation environments only support one model formalism, one reporting
format and one framework for animation. The simulation environment commonly ...the current gener-

ation of simulation
environments supports
a more substantive
rational approach to
solution finding.

supports one operating system, one hardware platform, one processor and thus one
concurrent physical location. Simulation environments are commonly designed for
one type of user, and one domain with one set of key performance indicators.

EFFECTIVE DECISION SUPPORT 5

Where a simulation environment should support a synthetic, interdisciplinary ap-
proach to problem solving, the current generation of simulation environments sup-
ports a more substantive rational approach to solution finding. We argue that most
of the currently used simulation environments are based on a 1-1-1 paradigm while
decision makers clearly require a converse Nn-Nm-No paradigm for their decision
support services and processes.

1.6 A simulation suite to support bounded rationality

The research presented in this thesis is founded on the hypothesis that the web-
enabled, service oriented characteristics of information system development pro-
vide a clear opportunity to design a simulation suite that is based on a Nn-Nm-No

paradigm. With such suite a studio based decision process is to be supported.

1.6.1 Studio based decision making

Stressing all three Us equally results in the concept of decision support studios,Stressing all three Us
equally results in a

DSS studio, which is a
(virtual) environment

in which...

suites and services (Keen and Sol, 2005). A suite is a well chosen set of services
and recipes for inter-connectivity; a decision support suite is thus a chosen set of
services and recipes to support a decision making process. A studio is a (virtual)
environment in which suites are deployed, e.g. a group decision room or a web-
portal. Studio based decision support is identified by the following three elements.

• Target: the target for the domain of decision support should be the arena
of ill-structured, multidisciplinary and multi-actor problems. This includes
infrastructural expansions and supply chain coordination issues.

• Process: decision support should be embedded in a studio-based process. A
studio is defined as a facilitative environment, face-to-face or via telecommu-
nications links, that enhances the active inclusion in the process of stakehold-
ers and builds the collaboration that is an intrinsic requirement for effective
processes (Keen and Sol, 2005).

• Technology: decision support should include suites to support the studios....suites, i.e. sets of
services and recipes

for inter- connectivity,
are deployed.

Suites are integrated IT development tools, systems and analytic methods
that are explicitly aimed at enhancing the studio decision process.

The introduction of a studio for decision support places the emphasis on lever-
aging the agility and effectiveness of decision support systems to a level that has
already been achieved in more operational management based decision making.
An attractive example of the innovate path we aim to follow is illustrated in figure
1.2. A decision making studio is presented in this figure: here executive decision
makers are supported by a suite of interacting models and information resources.

6

Fig. 1.2: Strategic management cockpit (SAP, 2004)

1.6.2 Service oriented computing

We argue that the concept of a suite is explicitly related to the service oriented The concept of a suite
is entwined with...society we live in. In a service oriented society, craftsmen are, due to specialization

and standardization, replaced by service providers, i.e. organizations that imple-
ment a service, supply its description and provide related technical and business
support (Papazoglou and Dubray, 2004).
The service oriented computing (SOC) paradigm, or service oriented architecture ...service oriented

computing, which is
based on...

(SOA), that underlies the design of modern information systems is presented in
figure 1.3. Papazoglou and Geogakopoulos (2003) define service oriented comput-
ing as the computing paradigm that utilizes services as fundamental elements for
developing information systems; it is about bringing connectivity at the center of
systems and software engineering. In this paradigm, a service is a self-describing,
open component that supports the rapid, low-cost composition of a distributed
information system. Service descriptions are used to advertise the service capa-
bilities, interface, behavior and quality. Since services may be offered by different
autonomous service providers, service oriented computing results in a distributed
computing infrastructure for both intra- and inter-organizational information sys-
tems.
Although the service oriented computing paradigm has resulted in the better ...services which are

self-describing, open
components.

connectivity of distributed information services, it has also questioned all our tra-
ditional beliefs on the structure of information systems: software applications are

EFFECTIVE DECISION SUPPORT 7

1980s: LAN

internet

1990s: WLAN 2000s: SOC

Fig. 1.3: The advent of the service oriented architecture

no longer single systems running on a single computer and bounded by a single
organization, and while concurrency has become the norm for the deployment of
service oriented information systems, programming languages and technical infras-
tructures are not designed for this (Papazoglou and Geogakopoulos, 2003).
The application of service oriented computing on the web is manifested in the
concept of a web service. A web service is a specific kind of service that is identi-
fied by a uniform resource identifier (URI), the service description and transportA service is mostly

designed to be
independent of the

specific context it is
deployed in; this

intended
independence results
in a loosely coupled

structure between
services.

components of which utilize open internet standards, e.g. the simple object access
protocol (SOAP) and the web service description language (WSDL) (Papazoglou
and Geogakopoulos, 2003).
Two final remarks must be made with respect to the context and value of a service.
One, a service is mostly designed to neglect the context it is deployed in; this
intended independence results in a loosely coupled structure between services. Two,
the value of a service may well be created by combining, i.e. composing, services.
The functions of such a composite service include the coordination of dataflow and
the monitoring of the quality of the composed services.

1.6.3 Research question

We now introduce the research question addressed in this thesis, which is based on
theories of studio based decision making and service oriented software engineering.

Research question: Can we create a simulation suite for decisionCan we create an
simulation suite for

multiple decision
makers, multiple

models in multiple
formalisms?

makers that supports a studio-based decision process and improves
their effectiveness when solving ill-structured, multidisciplinary prob-
lems?

8

1.7 Research approach

A scientific inquiry may best be illustrated as following a particular process or
strategy in which a set of research instruments are employed and which is guided We follow a scientific

process, which is
guided by...

by the researchers using an underlying research philosophy . In the following sec-
tions we discuss the philosophy, strategy and instruments applied in the pursuit of
the research objectives presented in this thesis.

1.7.1 Philosophy

The ambitious question that one aims to answer with a research philosophy is:
How can I come to know something new about the universe? Where some will
rely on sensory impressions, others will rely on pure reason, and yet others on a ...a research philoso-

phy, e.g. activism or
passivism.

scientific method. Determining the assumptions made in each approach allows us
to choose better our own approach to the acquisition of knowledge.
One can distinguish two major schools of thought in the field of research philoso-
phies (Wilson and Keil, 1999): passivism and activism. Passivists, or justifica-
tionists, believe that sensory experiences are impressed on a passive mind in a
mechanistic way (Acton, 2004), they thus believe that knowledge has foundations.
Descartes, with his indubitable clear and distinct ideas, and Hume, with his in-
corrigible sensory experiences, are typical examples. Recent passivists include the
logical positivists, or logical empiricists, such as Carnap and Simon, who believe
that observation statements are the foundation of all meaningful concepts (Hin-
tikka, 1975). In the field of decision support, logical positivists have repeatedly
aimed at the development of a general problem solver in which humans are fully
substituted by computers (Newell and Simon, 1963; Simon, 1977; Klir, 1985). Al-
though all passivists accept the objectivity of measurements and experiences, they
follow different approaches with regard to scientific inquiry.

• Inductivists believe that science progresses through the accumulation of facts.

• Probabilists believe that repeated empirical verifications of a theory, i.e. suc-
cessful predictions of observational results, make a theory more probably
true.

• Dogmatic, or naive, falsificationists believe that science progresses by the
generation of hypotheses which are falsified by nature.

Activists, also referred to as conventionalists or interpretivists, believe that sensory
observations are always influenced by one’s preconceptions, i.e. they are theory-
laden. Thus, the mind actively constructs one’s experiences of the environment,
and descriptions of events are always inferential, interpretive and theoretical.

EFFECTIVE DECISION SUPPORT 9

Activists thus deny that sensory observations are a sure foundation for knowledge;
it is selective (Koningsveld, 1987). Scientific knowledge therefore becomes a human
creation. Two different categories of activism can be distinguished.

• Conservative activists, referred to as Kantians. Kant believed that observa-
tions are structured by the a priori categories of the mind. The real world
beyond our innate conceptual framework is, according to Kantians, either
forever unknown or created by God to mirror the real world.

• Revolutionary conventionalists deny that science will ever become proven
knowledge; all knowledge is fallible. All assumptions are subject to criticism
and voluntary change. Revolutionary conventionalists are either realists such
as Popper and Lakatos or anti-realists such as Duhem.

Although philosophers from both schools of thought have formed an underlyingWe postulate that
systems engineering is

a subjective human
creation, and as such
base our research on

realistic activism.

philosophy for organizational and information system research, we postulate that
systems engineering is a subjective human creation and as such base our research
on realistic activism, or revolutionary conventialism.

1.7.2 Strategy

The research presented in this thesis reflects the design of a simulation suite; that is
the design of an information system. We present in this section a research strategy
for the design of the suite, and thus present a strategy for the accomplishment of
our research objective.
March and Smith (1995) present two strategies, or paradigms, for the design ofMarch and Smith

(1995) present two
strategies for the

design of an
information system:

the behavioral-science
paradigm and the

design-science
paradigm.

an information system: the behavioral-science paradigm and the design-science
paradigm. The behavioral-science paradigm has its roots in natural science re-
search methods; it seeks to develop and justify theories, i.e. principles and laws,
that explain or predict organizational and human phenomena surrounding the
analysis, design, implementation, management and use of information systems
(Delone and McLean, 1992, 2003; Seddon, 1997). The design-science paradigm
has its roots in engineering and the sciences of the artificial (Simon, 1996). It is
fundamentally a problem-solving paradigm. It seeks to create innovations that
define the ideas, practices, technical capabilities and products through which the
analysis, design, implementation and use of information systems can be effectively
and efficiently accomplished (Tsichritzis, 1997; Denning, 1997).
Lee (2000) argues that technology and behavior are not dichotomous in an infor-
mation system: they are inseparable. Hence, the need to address the pragmatists
deriving from Denvey who basically argue that the validity of theory is the action
it enables. Hevner et al. (2004) argue that technology and behavior are similarly
inseparable in information system research. Philosophically this argument is draw

10

from Aboulafia (1991) who argues that truth, i.e. justified theory, and utility, i.e. The design-science
paradigm is funda-
mentally a problem-
solving paradigm.

systems that are effective, are two sides of the same coin and that scientific research
should be evaluated in light of its practical implications. Hevner et al. (2004) argue
based on the above that design-science and behavioral-science should be engaged
in a complementary research paradigm. We agree with the arguments of Hevner
et al. (2004) and postulate such complementary, explorative research strategy for
this research. In this explorative strategy behavioral-science addresses research
through the development and justification of theories that explain or predict phe-
nomena related to the identified need. Design-science addresses research through
the building and evaluation of artifacts designed to meet the identified business
need.
Although a behavioral-science strategy is initially applied to understand organi-
zational needs with respect to decision support, issues concerning the strategy,
alignment and organizational design of decision support are outside the scope of
this thesis. We thus mainly concentrate on the design-science strategy in the
pursue of our research objective. We mainly concentrate

on the design-science
paradigm in the
pursue of our research
objective.

To achieve a true understanding of and appreciation for design science, an impor-
tant dichotomy must be faced. Design is both a process, i.e. a set of activities, and
a product, or artifact; design is thus both a verb and a noun (Walls et al., 1992).
March and Smith (1995) identify two design processes and four design products
in information system research. The two processes are build and evaluate. The
products are constructs, models , methods and instantiations . Constructs provide
a language in which a problem is defined and communicated (Hevner et al., 2004).
Models use constructs to represent the design problem and its solution space Si-
mon (1996). Methods define the processes that provide guidance on how to search
the solution space. Instantiations are implementations in a working system and
provide a proof of concept of the solution.

1.7.3 Instruments

We discuss the selected research instruments to implement the research strategy
in this section. The most commonly used instruments in the field of information
system development are (Galliers, 1992):

• laboratory experiment : the investigation of relations between controlled vari-
ables, with minimal and tightly controlled variations, solving an artificial
problem situation.

• field experiment : the experimentation of a small number of uncontrolled
variables in a practical, i.e. existing, problem.

• case study : a planned and focused study of a phenomenon in its natural

EFFECTIVE DECISION SUPPORT 11

setting with a large number of variables. Due to the natural setting, exper-
imental control over the number and the variation of variables is limited or
non-existent.

• action research: a study of relationships in the real world where the re-
searcher is actively involved and has an influence on the outcome of the
study. Action research can thus be described as a research methodology in
which the researcher simultaneously pursues action, or change, and research,
or understanding (Dick, 1999).

• survey : an investigation of a situation at a particular point in time, where
there is an actual basis for collecting and assessing data from multiple cases.
Surveys are commonly based on questionnaires which can be analyzed sta-
tistically.

• theorem proof : a rigorous mathematical argument which unequivocally demon-
strates the truth of a given proposition within a given set of axioms and
assumptions. A proven mathematical statement is called a theorem (Aigner
and Ziegler, 1998). Hypotheses are validated by the construction of theorems
based on a set of already validated derivation rules.

• simulation: the process of designing a model of a real system and conducting
experiments with this model for the purpose of either understanding the
behavior of the system or of evaluating various strategies for its operation
(Shannon, 1975).

• forecasting : the processes used to make forecasts. Typically, forecasting is
used to predict over time, i.e. time-series forecasting, and to make predictions
about differences among people, firms, or other objects, i.e. cross-sectional
data. The field includes the study and application of judgment and quanti-
tative, statistical methods.

Action research, field experiments, laboratory experiments and case studies formWe place a strong
emphasize on
neutrality and

external validity when
selecting the research

instruments for...

logical instruments for the inductive exploration of a problem and an evaluation of
design. The disadvantages of these instruments are that researchers may leap to
conclusions based on limited data or that they may drop disconfirming evidence
(Eisenhardt, 1989).
Given these disadvantages, and to limit their effects in our research, we place a
strong emphasize on neutrality and external validity when selecting the research
instruments to be used for the research presented here. Thus with respect to
neutrality we chose to work on problems in which we had no vested interest, i.e.
no stake in the outcome, and as a result, we chose not to use action research. Expert
validation and generalization of findings through multiple cases were chosen as the

12

means to meet our aim of external validity of results. The question how we acquire
such validity is discussed in the chapters presenting the specific cases.

1.8 Research outline

The outline of this research, illustrated in figure 1.4, reflects the explorative re-
search strategy. Two explorative case studies are presented in chapter 2. In this
chapter hypotheses are conclusively refined to complete the initial phase of this
research.
The concepts and theories of object-oriented system design are introduced in ...the explorative

research strategy
underlying this
research.

chapter 3, which is concluded with a set of principles for object-oriented systems
design. In terms of the design-science strategy, the object-oriented theories form
constructs; the principles form the methods.
We introduce several theories of modeling and simulation in chapter 4: the his-
tory of simulation (Nance, 1995), state-time relations (Nance, 1981), a framework
for simulation (Zeigler et al., 2000) and relations between simulation formalisms
(Vangheluwe and de Lara, 2002). This chapter contains the model.
The actual design, or instantiation, is presented in chapter 5. Here we present
our contribution to the field of systems engineering with the introduction of a
distributed simulation object library (DSOL), and we discuss the requirements,
architecture and implementation of the DSOL suite.
Verification and expert validation of DSOL are presented in chapter 6. In chapters
7 and 8 we present a validation of our hypotheses that DSOL contributes to more
effective decision support, based on the 3 Us. We present our conclusions and
explore potential future research in chapter 9.

EFFECTIVE DECISION SUPPORT 13

chapters 1, 2

chapters 6, 7, 8 chapter 5

chapters 3, 4

empirical

prescriptive

descriptive

conceptual

Fig. 1.4: The outline of this research

14

2. SIMULATION IN PRACTICE

We present two case studies in this chapter. The aim behind presenting these
two real-life situations is to sharpen our understanding of what is required, with
respect to usefulness, usability and usage, of a simulation environment. Tailored In this chapter we

present two case
studies.

simulation models were developed in both case studies and as such both cases
served as explorative basis for the requirements and design of the simulation suite
discussed in chapter 5.
We aim to provide insight into the effectiveness of a simulation environment based
on 3 different roles one can distinguish in a simulation study: the role of the
decision maker, the role of the simulation model builder and the role of systems
engineer, i.e. the developer of the simulation environment. Although a more
detailed introduction to the actors and roles involved in a simulation study is
presented in section 4.1, we will link our explorative findings to the effectiveness of
decision making per role per activity to introduce the framework for requirement
analysis.

2.1 Case 1: The net-centric supply chain

2.1.1 Introduction

In 2001 Delft University of Technology joined a consortium1 established to design
a next generation infrastructure for superior command and control at the supply
chain center of the United States Air Force (USAF) (Eccleston, 2002).
The assumption of the consortium was that an integrated information technol- In the first case study

we describe the design
of a next generation
infrastructure for
superior command
and control at the
supply chain center of
the United States Air
Force.

ogy architecture could be designed to overcome the problems that plague many
supply chains. Electronic exchange of information leads to a reduction in errors
and increased efficiency of the working processes. When one company can use
the information of other companies in the supply chain, the negative effects of
uncertainty can, in theory, be mitigated. In practice, however, the exchange of

1 Among the governmental partners of the consortium were the Defense Supply Center at
Richmond, the Air Combat Command Logistics Group at Langley, and the 7th Logistics Group at
Dyess. Among the educational and industrial partners were the RH Smith Business School, Delft
University of Technology, ASD, General Electric, Avaya, Oracle, Sun Microsystems, Manugistics,
and Tibco/TMS.

information between companies is not as easy as it seems. Many different systems
and standards are used, the number of peer-to-peer relations with other companies
in the network is usually too large to manage, most systems are not open for easy
exchange of information with other systems, and most companies are very reluc-
tant to share information with other companies in the first place (Boyson et al.,
2003).
The Department of Defense understood the importance of a new infrastructure
to support real-time supply chain decision-making. Toward that end, the office
of the Secretary of Defense sponsored a pilot project that would demonstrate the
characteristics and effectiveness of a portal-based architecture for managing supply
chains in the defense domain.
Portal technology allows all the partners in a supply chain to log onto a singlePortal technology

allows all the partners
in a supply chain to

log onto a single site
and immediately get

the relevant
information they need

to make certain
decisions.

portal site and immediately get the relevant information they need to make certain
decisions. The portal has uses for both suppliers and customers. Suppliers can be
given insight into the inventory levels of other portal users and tune their products
based on this information. Customers can be given diverse information and services
via a front-end on the Internet. For instance, a customer can log onto the portal,
enter an assigned security password, and gain access to real-time information about
his or her order. The customer can check on the production or shipping status
of an order, inventory availability or a host of other customer-specific data. This
resulted in the following requirements for the consortium (Boyson et al., 2003):

• to enable radical simplification of supply chain user interface and working
processes

• to demonstrate the end-to-end supply chain

• to provide real-time integration of, and visibility over, existing air force trans-
actional systems

• to provide forward visibility over global processes

• to create virtual, integrated and real-time supply chains

The consortium built an alpha-version supply chain e-portal for the F101 engineThe consortium built
an alpha-version

supply chain e-portal
for the F101 engine

community of the
USAF and General

Electric.

community of the USAF and General Electric, which provides web-based business
functionality, asset visibility, and total system intelligence to both the Air Force
and General Electric supply chain managers. The example supply chain of the low-
pressure turbine for F101 engines involved twenty-five parts, all made by General
Electric. Using this supply chain as a reference model, a comprehensive electronic
platform was built that combined field data collection technology, ERP functions,
advanced planning, collaborative planning and forecasting and real-time control

16

portal

Fig. 2.1: Multi-channel portal (Eccleston, 2002)

panel displays using geographic visualization and arrays of key performance indica-
tors. A password-protected test portal was built for evaluation by participants in
the supply chain to allow experimentation with these kinds of online functionality
(Boyson et al., 2003).

2.1.2 Relevance

We address the relevance of this particular case for our research in this section.
What makes this case so attractive for our research? To answer this, we recall the
Nn-Nm-No paradigm of chapter 1, and see that in this particular case the following
N s are explicitly required:

• multiple geographically and organizationally dispersed decision makers to
experiment concurrently within the portalled decision support studio

• multiple client side operating systems and multiple hardware platforms to
access the portal

• multiple composite models, fed by distributed data sources, to forecast the
performance of the supply chain

We furthermore argue that the autonomous services provided by the different A detailed requirement
analysis disclosed an
unbridgeable gap
between the require-
ments of the case and
the features of com-
mercially available, i.e.
traditional, simulation
environments.

actors in the F101 supply chain form a strong background for the service oriented
computing paradigm presented in section 1.6.2 on page 7. Our overall conclusion
was that this case lent itself well to help us to understand to what extent traditional
simulation environments support the required portalled support studio, and to
determine what services are required to fulfill the goals of the consortium.

SIMULATION IN PRACTICE 17

2.1.3 Conceptualization

We, a team of researchers from the Systems Engineering group of Delft University,
provided the simulation and visualization services for the supply chain portal. The
most relevant aspect of the case was to actually support multiple decision makers.
Generals, procurement officers, commercial traders and others all are supposed to
see, understand and experiment with portalled simulation models to address the
issues in supply chain logistics.
A detailed requirement analysis disclosed an unbridgeable gap between the re-
quirements formulated by the consortium and the features of traditional simula-
tion environments which are based on the concept of substantive rational decision
making (Boyson et al., 2003).

• Traditional simulation environments do not separate a model from a simula-
tor. Such a separation is required to replay the deterministic past, in which
case the decision support environment is fed with actual data and thus no
simulator is used to generate representative data.

• Traditional simulation environments do not separate a modeling environ-
ment from an experimentation environment, i.e. output and control screens.
Such separation is required to implement a multi-channel architecture where
the model is executed on one or more back-end systems and users are asyn-
chronously subscribed to outputs specifically tailored for their device.

• Security is a key requirement for any military development project (Eccle-
ston, 2002). Security resulted in a requirement that simulation models may
not be executed on a client device. Clients should merely receive updated
animations of results. How could traditional simulation be applied to fulfill
such constraints?

• Most traditional simulation environments are platform dependent (Hlupic,
1993; Tewoldeberhan et al., 2002) and as such undeployable on the Java/UNIX-
based servers proposed by the other partners in the consortium. Traditional
environments are furthermore single threaded and do not scale on multiple-
CPU environments. How were these traditional simulation environments
ever going to handle the gigabytes of transactions of the distributed supply
chain in real time?

To meet the above requirements and constraints, a choice was to develop of a Java
based simulation portal. Among the most important reasons to use this program-
ming language were its platform independency, its wide-spreading usage among
the partners involved and its support for distributed, web-enabled programming.
The architecture of the case is presented in figure 2.2. The first tier is the por-The consortium

proposed a multi-tier,
portalled

architecture... 18

First Tier (i.e. presentation) Second Tier (i.e. application) Third Tier (i.e. data)

FirstIS

Manusimulation
model

ERP

Snapshot

simulation
execution

server

visualization
events

web portal

Fig. 2.2: Architecture of the DoD simulation portal

tal tier which provides a web-based, single point of access to users. The second
tier, i.e. the application and middleware tier, provides the Java based simulation
model. The third tier is the database tier consisting of enterprise resource plan-
ning, decision support, warehouse and supply chain management systems of the
F101 engine. Distributed computing is a key concept for the specification of this
architecture; all of the back-end systems were geographically distributed over US
Air Force locations. As a result, all services, including the proposed simulation This gap led to the

development of a
Java-based simulation
environment.

services, needed to support this distributed interaction. The Air Force required
multi-channeling within the first tier. Access had to be based on the availability
of devices and tools (see figure 2.1).
A firewall separates the presentation tier, i.e. the client or the first tier, from the
other tiers in figure 2.2. The first tier, i.e. the client tier, receives visualization
events which are to be presented in the portal. The dedicated simulation server
instantiates simulation models from a model factory and initial values are fetched
from underlying data sources.

2.1.4 Specification

The Java programming language was used to implement the architecture presented
figure 2.2, because it is a platform independent, object oriented programming
language, and because it was the de-facto standard of all the other partners in the
consortium.
The specification of the case can be divided into three parts reflecting the three
tiers in the conceptual model. These parts are the specification of the portal tier,
the specification of the application layer tier and the specification of the data tier.

SIMULATION IN PRACTICE 19

 getConnection(): Connection

DodOracleConnection

 createDodCustomers(simModel: SimModelInterface):

 createDodSuppliers(simModel: SimModelInterface):

DodObjectFactory

 close()

 commit()

 createStatement()

 prepareCall(sql: String)

 prepareStatement(sql:)

 rollback()

interface

Connection
{java.sql}

controls

access

Fig. 2.3: Specification of the data tier

Specification of the data tier

The Java programming language provides JDBC technology as an application
program interface to provide cross-database connectivity to a wide range of SQL
databases. JDBC technology was used in this case study to parse the actors, i.e.
the suppliers and the buyers, in the F-101 supply chain. A class diagram of the
specification of the data tier is presented in figure 2.3. The DoDObjectFactory

class is used to parse customers and suppliers using the java.sql.Connection

interface. Although we explored the need to make business rules, actors, and
policies more flexible, no proven concepts or object libraries were available. As
a result, we introduced tailored supply chain classes such as the DoDTrader, the
Base, etc.

Specification of the application tier

The simulation model was specified in the application tier, as illustrated in theThe simulation model
was specified in the
application tier, as

illustrated in the class
diagram in figure 2.4.

class diagram in figure 2.4. We see in this class diagram that the SimModelInterface
does not contain the model, i.e. a representation of the F-101 supply chain, but
the state and behavior of a simulator, e.g. the start and pause functionality.
We furthermore see that the SimModelInterface contains an EventList on which
SimEvents are to be scheduled and removed. A SimEvent contains a target on
which a method must be invoked at a specified simulation time. In this situation
the model is thus only implicitly available as it forms the content of the eventList.

20

 addEvent(event: SimEventInterface)

 getSimulationTime(): double

 isRunning(): boolean

 pause()

 reset()

 setRunLength(runLength: double)

 start()

 stop()

interface

SimModelInterface

 execute()

 getAbsoluteExecutionTime()

interface

SimEventInterface

args: Object

executionTime: double

method: SerializableMethod

object: Object

 SimEvent(executionTime: double, object: Object, ..

 SimEvent(executionTime: double, object: Object, ..

 execute()

 getAbsoluteExecutionTime(): double

SimEvent

eventList: TreeMap

 EventList()

 addEvent(event: SimEventInterface)

 isEmpty(): boolean

 removeAllEvents()

 removeFirst(): SimEventInterface

 addLast(event: SimEventInterface)

 compareTo(object: Object): int

 getTime(): double

 isEmpty(): boolean

 removeFirst(): SimEventInterface

EventLinkedList

EventList

executes

contains

Fig. 2.4: Specification of the simulation model

SIMULATION IN PRACTICE 21

A more in-depth discussion on the nature of a SimEvent is presented in section
5.6.1 on page 80.

Specification of the portal tier

 EventController(storage: VisEventList, manager: RemoteEventListener)

 isRunning(): boolean

 processEvent(event: VisEvent)

 startAt(startTime: long)

 timeChanged(evt: TimeEvent)

 timeStopped()

 validateTimeEvent(evt: TimeEvent)

EventController

list: SortedMap

 VisEventList()

 firstTime(): double

 getVisEvent(seqID: long):

 getVisEventID(time: double):

 isEmpty(): boolean

 lastTime(): double

 size(): int

VisEventList

 VisEvent(sourceID: Serializable, factory: VisEventHandlerFactory, property: String, value: Serializable)

 VisEvent(sourceID: Serializable, property: String, value: Serializable, startTime: double)

 getEndTime(): double

 getReversedEvent(): VisEvent

 getStartTime(): double

 getType(): String

 getValue(): Object

 getVisEventHandler(): VisEventHandlerInterface

 isDiscrete(): boolean

VisEvent

has

has

Fig. 2.5: Specification of client side visualization

The specification of the portal tier is illustrated in figure 2.5. The class diagram
illustrated in this figure is deployed in a client-side applet. The EventController

functions as a client-side animator which can be stopped, resumed and started.
We see that VisEvents are fired from model objects to the portal tier where they
are stored in a VisEventList. A VisEvent contains information for the applet on
how to visualize a state change.
The specification of the portal tier fulfills three requirements. One, visualizations
implement the requirement for distributed animation since they are fired by model
objects in the application tier to applets in the presentation tier; in other words

22

they are fired from a server side simulation model to a client side web-page. Two,
although visualization events represent server side model objects, they do not
contain the business rules of the model objects. This ensured that neither model
logic nor model behavior were available to the client. Three visualization events
can represent both simulated data and the actual deterministic past.
To limit the number of VisEvents transported from the application tier to the To limit the num-

ber of VisEvents

transported from the
application tier to the
portal tier, the visu-
alization events were
based on the principle
of dead reckoning.

portal tier, the visualization events are based on the principle of dead reckoning , i.e.
the process of estimating a position by advancing a known position using course,
speed, time and distance to be traveled (Cai et al., 1999). Since dead reckoning
algorithms had to be specified for each individual model object, the relationship
between model objects, e.g. aircrafts, and the client side animation panels was
considered to be too complex.

2.1.5 Conclusions

The outcome of the case is presented in figure 2.6: a client side, portalled presen-
tation and control of simulation models. We successfully specified a distributed
model, distributed visualization and a deterministic replay of the past while con-
forming to the required security constraints. This distributed visualization and We successfully

specified a portalled
deployment of
simulation models,
but...

control of the simulation model contributed mainly to the useability of the sim-
ulation environment for the decision makers; the generals were given web-based
access to models representing their supply chain.
Based on Boyson et al. (2003) we can argue that the success of this explorative
case study was thus directly related to supporting n > 1 decision makers. In a
distributed world where different people are depending on each other while taking
decisions, we clearly validated both the need and our ability to support n > 1
decision makers.
Further success, with respect to fulfilling the requirements presented on page 17,
that was based on user experience and assesment, formed a clear justification for
further research into the development of a simulation suite (Jacobs et al., 2002).
A number of conclusions regarding further research were drawn.

• We conclude that since every single object, e.g. airplane, order, part, could
physically be deployed on a different computer, the concept of an identified ...system boundaries

evaporated, i.e. the
architecture was too
flexible,...

model with clear system boundaries evaporated. The increased usefulness
for model builders, achieved by providing facilities to use distributed model
components, clearly affected the usability of the simulation environment.

• Model objects fire visualization events to asynchronously subscribed anima-
tion panels. We concluded that the required dead-reckoning made client side
animation too complex. A useable structure for animation and visualization ...animation was too

complex ...remained a topic for further research.

SIMULATION IN PRACTICE 23

• In the field of software engineering the term hard coded refers to unchangeable
code. Hard-coded features are built into the software in such a way that
they cannot be easily modified. A final conclusion in this case study was
that the model was hard coded due to the unavailability of a standard...and the model was

hard coded. supply chain library; decision makers were not able to change the policies
that represented their behavior, e.g. ordering, billing and transportation
policies. This we consider an issue for both the decision maker and the model
builder with respect to usefulness and usability. Not providing a framework
for experimentation makes the environment less useable and therefore less
useful with respect to decision making.

A more general conclusion is expressed by Verbraeck (2004):

”Without doubt, supply chain simulation is a technology to watch. Re-
cent advances are transforming this technology from one that presented
a static, cumbersome and often outdated view of a supply chain to
something entirely different. New simulation technology, combined with
the power of internet-based, distributed, real-time processing capabil-
ities, is giving birth to an entirely new generation of modeling and
simulation tools. These tools will present managers with an up-to-the-
minute view of the activities of their extended global supply chains.
Web-based simulations, real-time interfaces between simulation models
and data sources, and distributed simulations will give managers the
power to make real-time decisions in a real-time world.”

Verbraeck (2004) clearly presents the challenges and opportunities in supply chain
modeling: supply chain managers need to be well served by web-based, real-time
simulation possibilities. The product of this case formed a first step towards meet-
ing this challenge.

24

Fig. 2.6: US Air Force net-centric supply chain portal (Boyson et al., 2003)

SIMULATION IN PRACTICE 25

Fig. 2.7: Park-A-Car (Frog, 2004)

2.2 Case 2: Controlling automated guided vehicles

2.2.1 Introduction

In 2002 Frog navigation joined a tender from the city of Rotterdam for the design
of a sophisticated parking garage. The municipality planned, because of space
constraints, a 2 floor underground parking garage in which cars would be parked
by automatic guided vehicles. Frog navigation proposed a solution named Park-
A-Car which is illustrated in figure 2.7.The second case study

involved the design of
a 2 floor underground

parking garage in
which cars would be
parked by automatic

guided vehicles.

Park-A-Car is an automated parking system consisting of dual mode side loaders
efficiently racking and stacking cars in a warehouse environment. Cars are placed
bumper-to-bumper, which decreases required building volume by up to 40 percent.
A specially developed side loader, the parking shuttle, picks up a car by its tires
using two sets of telescopic forks; it then enters a warehouse environment using
narrow aisles and unloads the loaded car onto one of the shelves on either side.
The actual number of parking shuttles used depends on the capacity of the parking
garage and the required retrieval speed for cars from the warehouse space (Frog,
2004).
Because of capacity constraints and the use of sophisticated technologies, the mu-
nicipality of Rotterdam required a simulation model to be developed that would

26

reassure it that no motorist would have to wait for more than 15 minutes for his
or her car. This simulation study was conducted by Delft University and served
as explorative case for our research into the development of a simulation suite.

2.2.2 Relevance

To illustrate the value of this particular case for our research, we recall the Nn-Nm-
No paradigm of chapter 1. We see that the following N s were explicitly required
in this particular case:

• multiple distributed stakeholders had to experiment concurrently within the The value of this case
mainly resulted from
the requirement that
multiple distributed
simulation model
builders had to be
supported.

simulation environment. These decision makers included Frog’s engineering
team, Frog’s sales team and the municipality of Rotterdam.

• multiple hardware and software platforms had to be supported by the sim-
ulation model, e.g. Linux, Microsoft Windows.

• the conceptual model of the case was based on multiple formalisms, i.e.
world-views. The movement of the automatic guided vehicles was conceptu-
alized as a set of differential equations, and passenger arrival was conceptu-
alized in a discrete event formalism.

2.2.3 Conceptualization

A CAD drawing of the first floor (level -2) of the parking garage is presented in
figure 2.8. In the center of the drawing a number of crosses indicate the elevators by
which cars enter and leave the garage. On both sides of these elevators conveyors
function as a buffer and as pickup location for the shuttles.
We will first outline the questions submitted by the Municipality of Rotterdam and
Frog’s engineering team before we elaborate on the challenges of this particular
case study for our research.

• What is the minimum, average and maximum motorist waiting time?

• How many automatic guided vehicles, i.e. shuttles, are needed, and what is
their utilization?

• What is the optimal elevator-vehicle-lane allocation scheme?

• What route and semaphore allocation model should be applied to minimize
interference between shuttles and prevent potential collision?

• What filling scheme should be used to deal with arrival peeks in the early
morning and departure peeks around 6pm?

SIMULATION IN PRACTICE 27

Fig. 2.8: Animation of the simulation model

The first activity in the simulation approach is to conceptualize the problem into
a set of models representing the structure and the processes of the case. A partial
class diagram, conceptualizing the structure of the case, is presented in figure
2.10. In this figure the Parking class specifies the parking garage containing
elevators, ticket machines, etc. The interface based scheme selection, i.e. the
FillschemeInterface, illustrates the extent to which Frog’s engineering team
was able to test different fill and release scenarios.
By far the most interesting class of figure 2.10 is the AGV class. As its name
suggest this class represents the automatic guided vehicles, i.e. the side loaders,
of the case. From a conceptual point of view, the behavior of an AGV would bestFrom a conceptual

point of view, the
behavior of an AGV

could be described as
a sequence of actions.

be described as a sequence of actions. An example of such sequence is presented
in figure 2.9. Here we illustrate the loading process of an AGV. An AGV drives,
whenever requested by an elevator, to the elevator, potentially unloads an already
loaded vehicle and loads a new vehicle. Such a conceptualization of the behavior
of an object in its process method reflects a modeling paradigm known as process
interaction. A more in depth discussion on process interaction is presented in
section 4.4 on page 53 and section 5.6.2 on page 81.

28

Fig. 2.9: Loading process of an AGV

2.2.4 Specification

Although process interaction was supported in early simulation languages such
as Simula 67 (Birtwistle, 1979), current object oriented programming languages
poorly support it. The reason is that process interaction requires an ability to
suspend and resume a process; this is illustrated by the wait-until-granted block
in figure 2.9. A more detailed discussion of this problem is presented in sections
5.3 and 5.6.2.
Since our Java based simulator did not support the process interaction formalism,
we were forced to specify the simulation model in another formalism: the discrete
event formalism. The conceptual model and its Java specification thus could not
be specified in the same formalism. As a consequence we had to split the process The lack of support for

the process interaction
formalism and support
for continuous
simulation stipulate
a need to support
multiple formalisms.

into small subprocesses which we could schedule on a discrete event list. The
large number of almost equally named methods in the AGV class in figure 2.10
represent these sub-processes and this is due to the lack of support for this process
interaction formalism.
It is not difficult to understand that the goal of claiming route segments is to pre-
vent collision between different vehicles. Speed and position of these side loaders
were conceptualized as second order differential equations. Our Java based sim-
ulator did not support continuous simulation in which the time advances based
on a constant △t. The lack of continuous simulation forced us to estimate the

SIMULATION IN PRACTICE 29

INNEROUTSCHEME: FillSchemeInterface

MIDDLEOUTSCHEME: FillSchemeInterface

OUTERINSCHEME: FillSchemeInterface

RANDOMSCHEME: FillSchemeInterface

 getSpot(occupied, area): ParkingSpot

 requestParkingSpot(occupied, parkingAreas): ParkingSpot

«interface»

nl.frog.park.fillschemes.FillSchemeInterface

location: Point3d

 TicketMachine(simulator, resource, requestedCapacity, location)

 TicketMachine(simulator, resource, location)

 getLocation(): Point3d

 receiveObject(object, requestedCapacity)

nl.frog.park.customer.entrance.TicketMachine

 receiveCar(car)

 receiveCustomer(customer)

Parking

 receiveArea(area, marshalledObject)

«interface»

nl.frog.park.layout.SemaphoreRequestor

 getOrientation(): int

 getRequests(): List

 isStatus(): boolean

 reclaimTicket(ticket, elevator)

 requestCapacity(amount, requestor)

«interface»

nl.frog.park.entities.AGVInterface

 computeDestination(spot): Point3d

 computePosition(): Point3d

 computeRotation(): double

 dropPartA()

 dropPartB()

 dropPartC()

 dropPartCcrab()

 getForseenDrivingDistance(): double

 movePartA()

 movePartAcrab()

 movePartB()

 movePartC()

 receiveObject(object)

 releasePartA()

 releasePartB()

 releasePartC()

 requestCapacity(amount, requestor)

 returnHome()

 returnHomestraight(requestor)

 getParkingAreas(): List

 isStatus(): boolean

 status_report(method)

 getArgs(): Object[]

 getDelay(): double

 getDestination(): Point3d

 getMethod(): SerializableMethod

 getTarget(): Object

PostponedMovement

nl.frog.park.entities.AGV

 getAGVs(): List

 getConveyor(position): LocatableStation

 getFillRatio(filled): double

 receiveObject(object)

 requestParkingSpot(occupied, fillScheme): ParkingSpot

Elevator

 releaseCapacity(arg0)

 requestCapacity(arg0, arg1)

«interface»

nl.tudelft.simulation.dsol.flow.ResourceInterface

 ~ elevators

0..*

 ~ releaseScheme1

 ~ ticketMachine1

 ~ fillScheme 1

«use»

F
ig

.
2
.1

0
:

P
artial

class
d
iagram

of
P
ark

-A
-C

ar

3
0

Fig. 2.11: Statistical output of the simulation model

continuous movement of the AGVs; this was achieved by introducing an tailored
numerical integration inner-class called PostponedMovement.
The lack of support for the process interaction formalism and support for continu-
ous simulation stipulate a need to support multiple formalisms in the specification
of a simulation model; this remains a topic for further research.
The web-based animation of the Park-A-Car simulation model is presented in figure
2.8. One can distinguish the driving parking shuttles, the red colored claimed
semaphores and a number of parked cars.
The graphical output of the model is presented in figure 2.8. We see 8 elevators
as crosses in the center of this figure. On both sides we see AGVs some of which
are moving. The ones that are moving are accompanied by red-colored rectangles.
These rectangles represent claimed semaphores, or tokens. Once such a semaphore
is claimed, other AGVs may not claim it, which prevents collision. The small
rectagles represent cars.
The statistical output of the model is presented in figure 2.11, the waiting times
for arriving and departing motorists are illustrated in this figure. The Park-A-Car

SIMULATION IN PRACTICE 31

simulation model furthermore provided charts on elevator usage, individual shuttle
movements and motorist waiting times at the ticket counters. We see bottlenecks
in the system at 8am, 5pm and 11pm. The long waiting time (≈ 12 minutes) at
11pm is the result of people claiming their car after they have visited a nearby
theater.
The main conclusion drawn from the simulation model was that the requirementThe municipality of

Rotterdam decided
based on the

simulation model not
to implement the

option as presented.

of not to exceed 15 minutes waiting time could only be met under optimal circum-
stances, since neither the AGVs, nor the elevators have spare capacity in the peak
hours. The municipality of Rotterdam decided, based on the simulation model,
not to implement the option as presented.

2.2.5 Conclusions

We introduced our research problem in section 1.5 on page 5 by stating thatThe conclusions of
this case were... most current simulation environments are based on an 1-1-1 paradigm; they are

designed to serve 1 problem owner, on 1 computer with 1 operating system, 1
formalism. In this section we evaluate to what extent we were able to overcome
this paradigm and to provide more useful and usable decision support. Our main
conclusions are:

• as introduced in section 2.2.2 the behavior of the automatic guided vehicles,...that vehicle
movement in the

model is too complex
to model using a

discrete event
formalism,...

i.e. the shuttles, is conceptually described as a set of nth order differential
equations . Since Java based simulation model did not support continuous
simulation, these functions could only be estimated by the discrete event
model specification. We conclude that to improve the usefulness of a sim-
ulation environment for the model builder there is a clear need to support
both continuous and discrete models.

• with respect to the usefulness of the suite we conclude that the specification...that the
specification of a

model in an
object-oriented

language is important
and...

of a model in a well understood and supported object-oriented language such
as Java is very important. In contrast to prior projects, Frog’s engineers were
able to verify the model because they understood the language in which the
model was specified. Although this conclusion might seem to contrast with
the conclusion drawn from the Air Force case in which we concluded that
the model structure evaporated, we must understand that this evaporation
was the result of a distributed model specification that did not underly the
Frog case. We conclude that standardized, i.e. object-oriented, insight into
the model directly contributed to the usability and usage of the environment
for the model builder.

32

• where traditional simulation environments restrict the use of concurrent ...that we were far
better equipped for
collaborative simula-
tion model specifica-
tion than traditional
environments.

versioning systems, documentation standards and conceptual modeling en-
vironments, the Java based suite enables the use of state-of-the-are software
engineering tools and techniques. Model specification was no longer tied to
one computer but dispersed over multiple geographically distributed loca-
tions and developers. We thus conclude that the Java based suite performed
better with respect to useability.

The overall conclusion is that although the suite had a good potential to become a
high-quality simulation suite, the current implementation mainly lacked effective-
ness with respect to its usefulness. Support for multiple formalisms and linkage
with other services, e.g. optimization and GIS services, remained to be established.

2.3 Research question revised

Explorative case studies, we have demonstrated that there is a need for a simula-
tion suite that supports distributed, multi-actor decision making. Using a general
purpose programming language, there is a value to be gained from developing a Based on these

case studies we
conclude there is
value to be gained
from developing a
simulation suite. This
resulted in a set
of revised research
questions.

simulation suite; in both case studies the requirements were largely fulfilled and
as such both case studies were successfully completed. We nevertheless conclude
that the set of created simulation services is far from complete, and that the value
of distributed interacting services has not been demonstrated. Model boundaries
and model oversight evaporated because of the loosely coupled structure of the
environment.
We formulated the following set of revised research questions based on the conclu-
sions of our explorative case studies.

Research question 1 Can we create a simulation suite which takes full advan-
tage of the distributed, service oriented computing paradigm?

Research question 2 Can we create a simulation suite which supports concep-
tual modeling freedom using discrete and continuous simulation models?

Research question 3 Can we create a simulation suite based on a loosely cou-
pled structure between a model and its environment, e.g. animation, statistics,
optimization components?

Research question 4 Can we provide scientific evidence that such a simulation
suite provides more effective decision than simulation environments that are based
on a 1 − 1 − 1 paradigm?

SIMULATION IN PRACTICE 33

34

3. SYSTEMS ENGINEERING PRINCIPLES

Systems engineering and its perspective on information system design form the Systems engineering
and its perspective on
information system
design form the
central themes of this
chapter.

central themes of this chapter. Systems engineering is distinguished from other
fields of engineering in the first section of this chapter. We continue with the
principles of designing system architectures in section 3.2. Object-orientation is
introduced as a preferred modeling paradigm of systems engineers in section 3.3.
Principles for object-oriented modeling are discussed in section 3.4.

3.1 Systems engineering

Since the 1950s a number of interrelated intellectual areas such as general systems
theory, information theory, cybernetics, control theory and mathematical systems
theory have emerged (Ashby, 1956; Klir, 1985). These areas can be identified
by the general term systems sciences of which the engineering subset is called
systems engineering. Simon (1976); Klir (1985) use three basic components of
scientific inquiry to compare system sciences and traditional sciences; these are:

• the domain of inquiry

• the body of knowledge regarding the domain

• a methodology linking activities in the process of problem solving, or knowl-
edge acquisition

We start with a definition of a system as a way to introduce the domain of inquiry
of systems engineering, or science.

Definition 3.1.1 A system is a part of the world we choose to regard as a whole, A system is a part of
the world we choose
to regard as a whole,
which contains a
collection of objects.

separated from the rest during a period of consideration, which contains a collection
of objects, each characterized by a selected set of attributes, operations and relations
(Holbaek-Hansen, 1975).

The value of this definition for our research is that it is rooted in an activistic
philosophy; system boundaries, objects and attributes are all subjectively chosen
and selected. Systems engineering is thus considered to be a subjective, procedural
rational activity.

An information system in juxta position to a real system is introduced in figure
3.1. Brussaard and Tas (1980) define this real system as those parts or aspects of
reality we want to investigate as a whole, with the intent to know, or eventually
to control.

information system

real system

decision support

system

control system

decision maker

Fig. 3.1: Information System

Brussaard and Tas (1980) continue by defining the functions of information systems
as: the collection, storage, processing, retrieval, transmission and distribution of
data by human beings and machines.
We started this section by introducing the three components by which Simon
(1976); Klir (1985) compare different sciences. The first component, i.e. the
domain of inquiry, of systems engineering can now be presented. According to
Klir (1985); Zeigler et al. (2000), systems engineering deals with the design of
systems; systems engineers focus on the design and the specification of system
structure: the objects, and relations, i.e. the behavior.
The second component by which Simon (1976); Klir (1985) compare different sci-
ences comprises the body of knowledge of systems engineering. How, in other
words, does one obtain knowledge about the relations within a system? As argued
in chapter 1, one can obtain knowledge using a formal mathematical deductive

36

approach or by using an inductive approach. A consecutive multidisciplinary in-
ductive approach is prescribed by Churchman (1971); Bosman (1977); Sol (1982);
Keen and Sol (2005) in the context of decision support for ill-structured problems,
in this approach the computer becomes the laboratory for the systems engineer.
As in any science, modeling paradigms and languages exist to make the body
of knowledge communicatable. Object-orientation has emerged as the de-facto Object-orientation

has emerged as the
de-facto modeling
paradigm of systems
engineers.

modeling paradigm in systems engineering (Booch et al., 1999). Since information
system development has been influenced so heavily by this paradigm, the rest of
this chapter is used to introduce its history, principles and consequences.
This is not to forget the third component by which Simon (1976); Klir (1985)
compare different sciences: the methodology. The methodology of systems engi-
neering forms the basis of chapter 4 on simulation. It involves the activities of
conceptualization, specification, verification, validation and experimentation.

3.2 Principles for system design

We present a variety of strategies to divide systems into modular sub-systems in
this section. We introduce the value of this concept by taking a look at the size
of a typical information system: between 101 and 105 objects are related (Eckel,
2000). If we cannot find a strategy that we can use to divide such design into sub-
systems, (re)use, validity and future development becomes at least questionable.
The concept of subsystems is introduced to help us understand the variety of
strategies that might be used.

Definition 3.2.1 A subsystem is a system that is part of some larger system
(Gove, 2002).

This implies a recursive definition of a system S as a set of systems {s}. The System design requires
decomposition into
either vertically
partitioned or into
horizontally layered
subsystems.

usefulness of this concept is entwined with the concept of modularity . The following
principle reflects strategies for dividing systems into subsystems.

Principle 3.2.1 System decomposition results into either vertically partitioned or
into horizontally layered subsystems.

Both approaches are illustrated in figure 3.2. A horizontally layered system is an
ordered set of subsystems in which each of the subsystems is built in terms of
the ones below it. A vertically partitioned system divides a system into multi-
ple autonomous, and therefore more loosely coupled subsystems, each providing
a particular service. The orthogonal decomposition of systems into either vertical
partitions or horizontal layers is not exclusive. Systems can be successfully decom-
posed into various combinations according to both approaches; partitions can be
layered and layers can be partitioned.

SYSTEMS ENGINEERING PRINCIPLES 37

VERTICALLY PARTITIONED HORIZONTALLY LAYERED

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

S
U

B
S
Y
S
T
E
M

S
U

B
S
Y
S
T
E
M

S
U

B
S
Y
S
T
E
M

Fig. 3.2: Decomposition of systems into subsystems

The value of dividing a system into horizontal layers and vertical partitions isThis orthogonal
decomposition is not
exclusive: partitions
can be layered and

layers can be
partitioned.

entwined with the concept of separation of concerns, and thus with the concept of a
subjective choice for a part of a larger system under investigation (Holbaek-Hansen,
1975; Sol, 1982). Separation of concerns is at the core of systems engineering.
It refers to the ability to identify, encapsulate, and manipulate those parts of a
system that are relevant to a particular concept, goal, task, or purpose (Tarr and
Ossher, 2001). Guided by this principle of systems decomposition, we can describe
the objects and underlying relations of these decomposed systems: we introduce
object-oriented systems description.

3.3 Object-oriented system description

Nygaard and Dahl launched a project in 1962 to develop a discrete event simulation
language, to be called Simula (Dahl, 2002). The resulting language was called
Simula 1 and was, partly because of European patriotism, based on the Algol 60
language.
In 1967, Hoare (1968) proposed the concept of record handling, consisting of record
classes and subclasses. Based on this proposal, Nygaard and Dahl stripped Simula
1 of all references to simulated time to give us the general purpose Simula 67
programming language. Nygaard and Dahl used the terms class and object , and
thus object-orientation was officially born.
The use of objects distinguishes object-orientation from techniques such as tradi-The use of objects

distinguishes
object-orientation.

tional structured methods, i.e. process-based methods in which data and function
are separated, or other techniques such as knowledge based systems, i.e. logic
programming, or mathematical methods, i.e. functional programming.

38

Several more object-oriented modeling languages appeared in the mid 1970s as
systems engineers began to experiment with this alternative approach to analysis
and design. New generations of tools and techniques emerged among which were
Fusion, Coad-Yourdon, OMT and OOSE (Meyer, 1997).
A critical mass of ideas emerged in the early 1990s when the designers of these
tools and techniques began to adopt ideas from other workers. With this came the
advent of the Unified Modeling Language (Booch et al., 1999).
Dahl (2002) argues that the importance of the object-oriented paradigm today is
such that one must assume that something similar would have come about with
or without the Simula effort. The fact remains however, that the object-oriented
paradigm was introduced in the mid 60s through Simula 67.
The basic theory of object-orientation is to divide a system into objects and re-
lations. As described, an object is characterized by a selected set of attributes,
operations and relations. Objects are instances of a class, which is a description
of a set of objects that share the same attributes, operations, relationships and
semantics (Booch et al., 1999). Object-orientation distinguishes the following two
types of relationships:

• generalization ↔ specialization; class A is a generalization of class B if, and The basic theory of
object-orientation is
to divide a system into
objects and relations,
i.e. ...

only if, every instance of class B is also an instance of class A, and there are
instances of class A which are not instances of class B. Equivalently, class A
is a generalization of B if B is a specialization of A. Formally we speak of a
generalization between classes whenever ∀x(Bx → Ax), ∃x(Ax¬ → Bx).

• association; where generalization specifies a relation between classes, as- ...generalization and
association.sociation refers to the structural relation between objects, or instances. A

special form of association that specifies a whole-part relationship between
the aggregate, i.e. the whole, and the object, i.e. the part, is called aggre-
gation, or decomposition. An aggregation relation is an association relation
with the exception that instances cannot have cyclic aggregation relation-
ships, i.e. a part cannot contain its whole.

Both types of relations are presented in figure 3.3. The arrow connecting the
Manager and the Employee illustrates a specialization relation. A manager is thus
a special employee and its class inherits both name and contract from the Employee
class.
The association between the Manager class and the Employee class distinguishes
the Manager from the Employee and therefore justifies the existence of the Manager
class. This relation is equivalent to the relation between an employee and his or
her name and contract. They all express association relations.
A number of principles, or guidelines, have evolved to improve the quality of
object-oriented modeling and design since its birth in 1967.

SYSTEMS ENGINEERING PRINCIPLES 39

name: String

 Employee()

 getName(): String

Employee

 Manager()

Manager

description: String

salary: double

 Contract()

 getDescription(): String

 getSalary(): double

Contract

0..1

1..*

manages

11
has

class name

attribute : type

method : return type

association

generalization

modifier

cardinality

class

modifiers

private
protected
public

constructor

Fig. 3.3: Relations in object-orientation

3.4 Principles for object-oriented modeling

The principles for object-oriented modeling as described in (Lee and Tepfenhart,A number of
principles, or

guidelines, have
evolved to improve

the quality of
object-oriented

modeling.

2002; Booch et al., 1999; Eckel, 2000) are presented in this section. Where these
principles require examples to illuminate their inner-works or importance, they are
specified in the Java programming language.

Principle 3.4.1 Class design: the ability to specify classes.

A class can be viewed from different perspectives: modeling, design, implemen-
tation and compilation. From a modeling perspective, a class is a template for a
category of objects. It defines the attributes, operations and relations of the cat-
egory and thus of all objects belonging to the category. From an implementation
perspective a class is a global object with globally accessible attributes, relations
and operations.

Principle 3.4.2 Information hiding: an object explicitly describes which attributesInformation hiding
denotes that an object

explicitly describes
which attributes and
methods are publicly

visible.

and methods are publicly visible and therefore accessible to other objects.

Object-orientation provides modifiers to define to what extent attributes and op-
erations are hidden from other objects. Besides a public modifier, an object may
declare its attributes to be protected or private. Where the private modifier is used
to encapsulate the attributes of an object, the protected modifier grants access to
the object and all its subclasses (see principle 3.4.5).

40

 Manager()

Manager

name: String

 Employee()

 doWork(job: Job)

 doWork(job: Job, priority: short)

 getName(): String

Employee

Fig. 3.4: Overloading

Principle 3.4.3 Encapsulation: attributes and operations uniquely belong to an Encapsulation denotes
that attributes and
operations uniquely
belong to an object.

object.

Encapsulation is a concept of which the value might not be immediately apparent.
It’s importance results from the elimination of the need to check that attributes
are manipulated by an appropriate operation. The manipulation of an attribute
is explicitly granted to the object that owns the attribute.

Principle 3.4.4 Polymorphism: the word polymorphism comes from the Greek Polymorphism denotes
an object’s capacity to
have multiple forms.

for ”many forms” and denotes an object’s capacity to have multiple forms.

Cardelli and Wegner (1985) divide polymorphism into two categories, i.e. runtime
and universal polymorphism. Runtime polymorphism can be further categorized
into coercion and overloading . Universal polymorphism includes parametric poly-
morphism and inclusion. These four variants can be defined as follows:

• coercion represents an implicit parameter type conversion to the type ex-
pected by a method or an operator, thereby avoiding type errors. A good
example is 2.0+2.0 versus 2.0+"2.0". Where two double values are added
in the first examples, coercion converts the 2.0 double value of the second ex-
ample into a string and the result will be the concatenated string "2.02.0".

• overloading permits the use of the same operator or method name to de-
note multiple, distinct program meanings. An example of overloading is
presented in figure 3.4. In this example we define two methods, both are

SYSTEMS ENGINEERING PRINCIPLES 41

named doWork(). The method, and thus the implementation to be used,
depends on whether a priority is given as argument to the invocation.

• parametric polymorphism, also referred to as type parameterization or the
use of generics. Lisp and Simula 67 were the first languages to support
parametric polymorphism (Eckel, 2004b). One may define latent types, or
latent classes, in these languages, i.e. a type that is implied by how it is used,
but that is never explicitly specified. That is, the latent class is implied by
the methods that one may call on it. If one calls methods f() and g() on
a latent class, then one implies that a class has methods f() and g(), even
though that class is never actually defined anywhere (Eckel, 2004b,a).

• inclusion achieves polymorphic behavior via an inclusion relation between
classes. The inclusion relation is a subtype relation in most object-oriented
languages; inclusion is therefore often called subtype polymorphism.

name: String

 Employee()

 doWork(job: Job)

 doWork(job: Job, priority: short)

 getName(): String

Employee

 GoodChildManager()

 evaluate(employee: Employee)

GoodChildManager

 BadChildEmployee()

 doWork(job: Job, priority: short)

 evaluate(employee: Employee)

BadChildEmployee

Fig. 3.5: Good child versus bad child

Principle 3.4.5 Inheritance: classes can be organized in a hierarchical inheri-Inheritance denotes
that classes can be

organized in a
hierarchical structure.

tance structure. In such a structure, the subclass inherits the protected and public
attributes and operations from the superclass.

The value of inheritance is far from trivial. Where some argue that inheritance
should be the leading principle in systems design, others argue that its value is

42

overrated. As presented in section 3.3, inheritance embodies the specialization
relation between classes. An abstract class is used to create only subclasses; there-
fore there may be no direct instances of such class. The principle of inheritance
has the following properties:

• object instances of the descending class have values for all the attributes and
relations of the ancestor class.

• all operations provided by the ancestor class must also be provided by the
descendent class. Visibility and accessibility of operations may not be limited
by subclasses.

• inheritance distinguishes good children versus bad children (Eckel, 2000). A
good child is a descending class without polymorphism; all operations pro-
vided by the ancestor are used by the descendent class. A bad child supplies
its own customized implementation for some of the operations provided by
the ancestor class. The difference between a good child and a bad child is
illustrated in figure 3.5: where the good child inherits the doWork methods
of the Employee, the bad child overwrites its implementation

• inheritance is antisymmetric. If class A is a subclass of class B, then class
B cannot be a subclass of class A. Inheritance is furthermore transitive. If
class A is a subclass of class B and class B is a subclass of class C, class A
is also a subclass of class C.

Principle 3.4.6 Delegation: an object passes the invocation of an operation on Delegation denotes
that an object has
passed the invocation
of an operation on to
another object.

to another object which actually fulfills the invoked operation.

Delegation is also referred to as the perfect bureaucratic principle; an invoked
operation is delegated from an object to another object that has the attributes
and operations to fulfill the required operation. Delegation is closely related to
the design by contract principle (see principle 3.4.9). Delegation implies that it is
the authority that is delegated; not the responsibility.
Since the early 1980s there has been much debate over which principle embodies
a more powerful concept for implementing the specialization relation presented
in section 3.3: the principle of inheritance or the principle of delegation. Stein,
Lieberman and Unger came together in 1987 to discuss their differences and this
resulted in a statement reflecting the need for both principles (Lieberman et al.,
1988). This treatment became known as The Orlando Treaty.

SYSTEMS ENGINEERING PRINCIPLES 43

Principle 3.4.7 Asynchronous communication: an object invokes an operationAsynchronous
communication is the
principle of invoking

an operation on
another object where
the requesting object

does not expect an
immediate result.

on another object where it does not expect an immediate result (Booch et al., 1999).

This principle introduces the pattern of subscription. Instead of polling an object
for a state change in which one is interested, an object provides operations for
asynchronous subscriptions. Whenever the state change occurs, the object that
subscribed is notified. The object interested in potential state changes is referred
to as Listener, the object which accepts asynchronous subscriptions is called Pro-
ducer.

Principle 3.4.8 Late binding: support for the ability to determine the specificLate binding is the
support for the ability

to determine the
specific class, and
thus the specific

specification of an
operation, at runtime.

class, and thus the specific specification of an operation, at runtime.

Although the concept of late binding increases the complexity of understanding
object-oriented code, it is one of the most powerful methods used in the pursuit
of loosely coupled systems. The concept is illustrated by the following example:

26 public class Worker

27 {
..

33 public void execute(final Worker worker)

34 {
35 worker.execute(worker);

36 }
..

37 }

At first sight, the above specification of the execute operation might seem dubious
and destined to produce an infinite loop; this is not the case. Late binding allows
us to invoke the execute operation with an instance of a subclass of Worker. Then
this overridden implementation of the execute operation is invoked.
Current object-oriented programming languages such as Java even allow objects
to automatically download unavailable class information of such subclasses at run-
time. This is called dynamic class downloading (Sing, 2000).

Principle 3.4.9 Design by contract: the ability to design a set of operations asDesign by contract is
the ability to design a
set of operations as a

contract.

a contract.

Meyer (1992) originated a design principle called design by contract: in addition to
specifying the signature of a method, the designer also specifies the pre-conditions,
the post-conditions and the invariants, i.e. conditions that should be true of a class

44

name: String

 Employee()

Employee

 Object()

 getClass()

Object

 getFields()

 getMethods()

 getName()

 getSuperclass()

Class
 getDeclaringClass()

 getExceptionTypes()

 getModifiers(): int

 getName()

 getParameterTypes()

 getReturnType()

 invoke(arg0: Object, arg1: Object)

Method

instance of

has 1

1

0..n

0..n

Fig. 3.6: Reflection

in general. The strength of this principle is that it gets the designer to think clearly
about what service an method provides (Meyer, 1992).
A few programming languages, e.g. Eiffel, implement pre- and post-conditions in
executable code so that they are checked at run time. Most programming lan-
guages do not have such support, so programmers who want to use pre- and post-
conditions often write comments documenting the conditions. In these languages
the principle of design by contract is embodied in the signature of a method, which
is published in an interface. An interface describes the syntax of a service descrip-
tion; it specifies the signatures of the operations to be implemented by classes
implementing the interface. If we recall the service oriented computing paradigm
of section 1.6.2 we may conclude that an interface embodies the concept of a ser-
vice description. Thus interfaces promote the conceptual strength for separating
requirements from specification, and increase our ability to design loosely coupled
systems.

Principle 3.4.10 Reflection: an object knows the detailed information about the Reflection is the ability
of an object to know
detailed information
about the class(es)
and interface(s) of
which it is an instance.

class(es) and interface(s) of which it is an instance.

A consequence of reflection is that an object can, at runtime, aquire detailed infor-
mation on its state and methods. The principle of reflection is presented in figure

SYSTEMS ENGINEERING PRINCIPLES 45

3.6. The Employee class inherits a method getClass() which returns the class
of which the object is an instance, i.e. Employee.class. This Employee.class

contains methods to resolve methods and fields.

3.5 Summary

Systems engineering was presented in this chapter, where we presented a system as
a part of the world we choose to regard as a whole, separated from the rest during
a period of consideration, which contains a collection of objects, each characterized
by a selected set of attributes, operations and relations.
The de-facto language to describe systems is the object-oriented description. Al-
though object-orientation only specifies two orthogonal types of relations, object-
oriented system design is considered to be complex. In this chapter we presented
a set of design principles which will form the basis for the design presented in the
remainder of this thesis.

46

4. SIMULATION AS A METHOD OF INQUIRY

4.1 Actors and activities in a simulation study

Decision support is not just about software, models and tools: decision support is
about making decisions following a method of inquiry. Simulation is the preferred
method of inquiry in the context of ill structured problems (Shannon, 1975; Sol,
1982).
Shannon defines simulation as the process of designing a model of a real system Simulation is the

process of designing a
model of a real system
and conducting
experiments with this
model.

and conducting experiments with this model for the purpose of either understand-
ing the behavior of the system or of evaluating various strategies for its operation
(Shannon, 1975). The following actors can be distinguished in the more general
domain in decision support (Keen and Sol, 2005):

• stakeholders make the decision and are committed to the results. Since stake-
holders are most often senior members of an organization, they commonly
do not create the models themselves and are merely interested in the output
of a rational inquiry, both substantive and procedural.

• non-stakeholders are involved in the process of decision making, but have no
stake in its outcome. Consultants, supporting staff, system administrators
and the actual model builders, are often non-stakeholders.

A further distinction is made with respect to the role of an actor. The following
roles can be distinguished with respect to decision support systems:

• users are considered to be customers of the system. Users access the simu-
lation suite to use it to experiment and analyze scenarios.

• builders have a more intensive role. Builders conceptualize and specify a
system under investigation. This role is most often played by consultants.
A builder is thus involved in all the steps of the modeling life cycle.

• systems engineers design decision support services, e.g. a simulation suite.
Although the engineers need not to be involved in any of the steps of an
actual modeling cycle, they need to be able to understand the requirements
of and have experience with the roles of users and builders.

• maintainers deploy and maintain simulation tools within the enterprise in-
formation architecture. Maintainers have thus stake in the quality aspects
of a simulation suite.

One of the cornerstones of the studio based approach to decision support is that
the above roles are neither exclusive, nor static. Actors can have more than one
role and an actor’s role may change over time. One might then ask why do these
roles need to be delineated, to which the answer is: the roles are used to provide a
rational structure for the identification of requirements for the simulation suite. In
short roles are used to express who needs what. Before we elaborate on the activ-
ities involved in a simulation study, we introduce a formal framework containing
the concepts involved.

4.2 A framework for simulation

A framework for simulation based on Zeigler’s ”Theory of modeling and simula-
tion” (Zeigler et al., 2000) is presented in this section. The framework is used
to formalize the concepts and terms of a simulation study. See figure 4.1 for a
graphical representation of the framework and its basic entities.

• The real system is that part of reality which is under consideration. It is
viewed as the source of observable data. Zeigler refers in the definition of
this system to Klir’s epistemological level 0 (Klir, 1985). The real system
is what Zeigler addresses as the source system. The real system reflects the
definition of a system as presented in 3.1.1 on page 35: it is a part of the
world we choose to regard as a whole, which contains a collection of objects
and underlying relations (Holbaek-Hansen, 1975).

• The experimental frame consists of a specification of the conditions under
which the system is experimented with or observed. The experimental frame
is discussed in section 4.5.

• The simulation model is a system description, e.g. an object-oriented de-A simulation model is
a system description

following.
scription or a mathematical description, of a real system. A simulation model
specifies both the relations and the behavior of the system as a function of
the system time.

• The simulator is an object, not part of the real system, that is used toThe simulator is used
to generate the
behavior of the

simulation model.

generate the behavior of the simulation model.

The value of figure 4.1 for our research is the distinction made in this framework
between the simulator and the simulation model. While most simulation software

48

real system

simulator

simulation model

experimental frame

Fig. 4.1: A framework for simulation

environments do not uphold this distinction (Hlupic, 1993), we argue in this thesis
that there is a lot to be gained from separating these parts. Advantages include
the ability to use different simulators on the same model and the ability to (re)use
a model in non-simulated operational business processes, see chapters 7 and 8.
Before we elaborate on the specification of a simulation suite in chapter 5, we need
to present several conceptual modeling formalisms.

4.3 Multi-formalism modeling

As introduced by Kiviat (1967); Fischman (1973) simulation models have two
orthogonal types of structure: a static and a dynamic structure; the dynamic
structure is also referred to as the behavior of a simulation model. Where the static
structure represents the state of the simulation model, the behavior represents Simulation models

have two orthogonal
types of structure: a
static and a dynamic
structure

its time-dependent state transitions.
Nance (1981) introduces a small set of basic definitions in which he carefully dis-
tinguishes time and state relationships. He argues that any simulation model rep-
resentation can be constructed with this given set of definitions. Nance’s starting
point is the object-oriented system description presented in section 3.3; a simula-
tion model is thus considered to be comprised of objects described in terms of their
attributes and values. Assigning a value to an attribute of an object in a system
description is done based on observations. These observations may change over

SIMULATION AS A METHOD OF INQUIRY 49

the actual state of an object. They thus may change over time, e.g. a patient’s
temperature, over place, e.g. the location of an airplane. Such an underlying
property, used to distinguish different observations of the same attribute, is called
a backdrop (Klir, 1985).
In time-based simulation, system time, or simulation time, is used as the backdrop
of the system. Nance presents the definitions illustrated in figure 4.2 concerning
system, or simulation, time. An instant is defined as a value of system time atIn time based

simulation, system
time is used to

distinguish different
observations of the

same attribute.

which the value of an attribute can be altered. An interval is the duration between
two successive instants and a span is the concatenated succession of intervals.

Fig. 4.2: Time related concepts

The state of an object is the enumeration of all attribute values of an object atThere are different
approaches that can
be used to describe

the behavior of a
simulation model;

they are referred to as
a world view,

formalism, or a
modeling construct.

an instant. The relation between system time and system state are illustrated in
figure 4.3. An event is a change in the state of an object at an instant. A process
is the succession of states of an object over a span.

Fig. 4.3: State related concepts

While this set of definitions describes the static structure of a simulation model,
there are different approaches that can be used to describe the behavior of a
simulation model. These approaches are referred to as a world view , formalism,
or modeling construct .
The evolution of a formal description of simulation formalisms started with Zei-
gler’s categorization in Zeigler (1976). Zeigler presents formalisms based on the
continuous versus discrete nature of their time advancing and state transition func-
tions. This results in the following fundamental formalisms.

50

• Differential equation system specification (DESS): this formalism represents
the traditional differential equations with a continuous time advancing func-
tion and a continuous state transition function.

• Discrete time system specification (DTSS): this formalism represents systems
with a continuous state transition function and a discrete time advancing
function, i.e. t(xn) = t(xn−1) + △t.

• Discrete event system specification (DEVS): this formalism represents sys-
tems which operate on a discrete time function with a discrete state transition
function.

time

DESS

DTSS DEVS

d
is

cr
e
te

co
n
ti
n
u
o
u
s

ti
m

e

st
a
te

time

st
a
te

continuous discretestate

time

st
a
te

Fig. 4.4: Continuous versus discrete formalisms (Zeigler et al., 2000)

Zeigler et al. (2000); Vangheluwe and de Lara (2002) argue that systems often It is desirable to
express the behavior of
a model as a function
of multiple formalisms,
i.e. multi-formalism
modeling.

have components and aspects for which the state transition function cannot be
described in a single comprehensive formalism. It is desirable to express state
transition functions as a function of multiple formalisms for the design and analysis
of such systems; hence the concept of multi-formalism modeling .
Vangheluwe and de Lara (2002) present the formalism space in what is known
as a formalism transformation graph, see figure 4.5. The different formalisms

SIMULATION AS A METHOD OF INQUIRY 51

PDE

KTG

Bond Graph a-causal

DAE non-causal set

System Dynamics

Bond Graph causal

Cellular Automata

DAE causal set

DAE causal sequence

Transfer function

Petri Nets
3 Phase Approach

Process Interaction

DEVSDEVS&DESS

Differential Equations

scheduling-hybrid DAE

Timed Automata

Activity Scanning

Event scheduling

continuous formalisms discrete formalisms

Statecharts

Fig. 4.5: Formalism transformation graph (Vangheluwe and de Lara, 2002)

52

are presented as the nodes of the graph in figure 4.5. The vertical dashed line
delineates the categorization between continuous and discrete formalism. The
arrows in figure 4.5 denote behavior-preserving homomorphic relations between
formalisms. These relations are also referred to as embedded relations in which
one formalism is mapped onto another (Zeigler et al., 2000).
Zeigler (1976); Zeigler et al. (2000) conclude that any formalism can be embed-
ded in either the discrete event system specification (DEVS) or in the continuous
differential equation system specification (DESS). Zeigler et al. (2000) show that
a combined DEVS and DESS formalism is closed under coupling which implies
that coupling models expressed within a formalism produces composite models
that can also be expressed in the formalism. The main conclusion is that this
combined DEVS and DESS formalism provides us with a formalism in which any
time based modeling formalism can be embedded. The graph illustrated in figure
4.5 thus becomes traversable. As shown in the formalism transformation graph The combined DEVS

and DESS formalism
provides us with a
formalism in which any
time based modeling
formalism can be
embedded.

of figure 4.5, a multitude of more specialized formalisms has been developed.
In the subset of continuous formalisms these formalisms are related to a specific
domain. For example, where system dynamics is targeted at social or ecological
systems, bond graphs are commonly used in engineering systems with a variety of
thermal, mechanical or electrical components.
The discrete formalisms are not related to a specific domain, in each formalism
a unique approach is followed to specify, or group, the behavior of a simulation
model. Overstreet and Nance (1986); Page et al. (1997) refer to the concept of
locality when they speak of grouping behavior in a simulation model.

4.4 Three classical formalisms for discrete event simulation

Three classical formalisms exist to describe the behavior of a system under inves-
tigation in discrete event simulation. The meta-model of these formalisms is the
selected set of state and time definitions introduced in section 4.3.
The differences between these formalisms is based on how the behavior, i.e. time Three classical

formalisms exist to
describe the dynamic
structure of a system
under investigation
in discrete event
simulation.

advancing function, of the simulation model is specified. The three classical for-
malisms for discrete event simulation are:

• event scheduling : a modeler defines events at which discontinuous state tran-
sitions occur. An event can cause, via scheduling, other events to occur. As
described by Balci (1988) the strategy for the event scheduling world view is
to repeatedly select the earliest scheduled event, to advance the simulation
time to the execution time of that event and to invoke the operation specified
by the event. In the event scheduling formalism the behavior and thus the
processing of the simulation model is grouped in a time sorted eventlist: the
simulation model is described as a time sorted set of scheduled events.

SIMULATION AS A METHOD OF INQUIRY 53

• activity scanning : activity scanning, also known as the two-phase approach
was first used in the language CSL (Buxton and Laski, 1962). Activity
scanning is a form of rule based programming, in which a rule is specified
upon the satisfaction of which a predefined set of operations is executed
(Balci, 1988). Activity scanning is referred to as the two-phase approach
because the simulation model behavior consists of two phases. In phase
one the simulation time is increased with a fixed time step, i.e. t(xn) =
t(xn−1) + △t. In phase two, the conditions of the activities are tested in
the order of activity priorities. If an activity’s condition is satisfied, the
actions of that activity are performed. State-based and mixed, i.e. time-
based and state-based, events are also referred to as contingent event (Nance,
1981). Activity scanning is generally considered less efficient with respect to
computational execution because of the fixed time step of its time advance
function (Balci, 1988).

• process interaction: each process in a simulation model specification de-
scribes its own action sequence (Overstreet and Nance, 1986). This formal-
ism thus reflects the autonomy of an individual process, i.e. the life cycle,
and the concurrency in the execution of distinct processes. A process must
have the ability to suspend and resume operation in its action sequence. A
classic example of process interaction is presented by Birtwistle (1979). This
example presents a simulation model of boats entering a port and competing
for resources. Boats are the objects that trigger processes of this simulation
model and define the following sequence: enter port, claim jetty, claim tugs,
undock, release tugs, release jetty and leave port. The behavior of the model
is thus grouped within the boats, i.e. the temporary objects as they interact
with the permanent object during the execution of the simulation model.

A simulation language is said to be event-oriented , activity-oriented, or process-A discrete simulation
language is said to be
either event-oriented,

activity-oriented, or
process-oriented.

oriented whenever it supports simulation models which express their behavior
according to the event scheduling, activity scanning or process interaction formal-
ism.
The above sections provide us formalisms by which a real system can be abstracted
into a simulation model. The next step is to design the experiment. This step is
complex and much debated.

54

inputProperties: Properties

runLength: double

warmupPeriod: double

 Treatment()

Treatment

seeds: List

 Replication()

Replication

 Experiment()

Experiment

 SimulationModel()

SimulationModel

 Simulator()

Simulator

0..11..*

defines

0..1

1..1

describes

1 1..*
on

1..* 1..*
executes

 ExperimentalFrame()

ExperimentalFrame

1..*

1..1

contains

Fig. 4.6: A framework for experimentation

4.5 Experimental design

The mutual relation between experiments and a model is concentrated on in this
section. Our aim in this section is primarily to answer a number of questions such
as: What is an experiment? What are the constraints imposed by an experiment
on model design?
In line with Law and Kelton (2000) we argue that these questions are important
because often a great deal of time and money is spent on model development, but
little effort is made to analyze the output of an experiment appropriately (Law
and Kelton, 2000).
To prevent misuse of tools and techniques, we pay a lot of attention to the concept
of an experimental frame. This concept, presented in figure 4.6 follows Ören and
Zeigler (1979); Sol (1982); Zeigler (1984) in their specification of an experiment, a
treatment, a run control and a replication.
According to Sol (1982) a simulation model is transformed into an executable
simulation model system by including provisions to expose it to a treatment by
which it is placed in an experimental frame. The following concepts define a
framework for experimentation:

SIMULATION AS A METHOD OF INQUIRY 55

• a treatment consists, according to Ören and Zeigler (1979); Sol (1982) of
input data, initialization conditions, and run control conditions.

• a run control specifies the experimental conditions under which the treatment
is conducted on the simulation model, i.e. the runlength and the warmup
period (Law and Kelton, 2000). The run control variables are specified as
attributes of the treatment (see figure 4.6).

• an experimental frame, is defined as a set of possible treatments.

• an experiment is a set of replications, with individual pseudo-random number
streams, under the same treatment, simulator and model.

• a replication is one run out of a collection of runs under the same treatment,
except for initialization conditions that provide statistical independence, i.e.
the seeds.

4.6 Activities involved in a simulation study

The next step is to identify the activities of a simulation study. Following Shannon
(1975); Sol (1982); Banks (1998) we approach simulation as a method of inquiry
in which decision makers create a model of a real system, which serves a goal of
experimentation, to support actual decision making. The following activities make
this method.

• Model conceptualization: the abstraction of a real system by a conceptual
model (Banks, 1998). In our system of concepts the object-oriented system
description forms a central position. Conceptual models are thus object-
oriented models represeting the objects and relations of the real system under
investigation.

• Model specification: the collection of empirical data and the specificationWe approach
simulation as a

method of inquiry in
which decision makers

create a model of a
real system, which

serves a goal of
experimentation, to

support actual
decision making.

of attribute values of the objects specified in the conceptual model in a
computer-recognizable simulation model. (Banks, 1998). The creation of an
experimental design forms part of this activity.

• Verification: the process of determining that a model implementation accu-
rately represents the developer’s conceptual description of the model and the
solution to the model (Roache, 1998). The initialization conditions, the run
control conditions and the number of replications of the different treatments
are determined in this activity.

56

• Validation: the process of determining the degree to which a model is an ac-
curate representation of the real system from the perspective of the intended
uses of the model (Roache, 1998). We distinguish several approached to val-
idation. We refer to structural validation if hypotheses on the behavior of
the simulation model are checked. We refer to replicative validation of values
of endogenous attribute values are compared with the ones found in the real
system. We refer to predictive validation, or expert validation whenever the
plausibility of a simulation model is tested by experts (Sol, 1982).

• Experimentation: the process of using the specified model for the purpose of
either understanding the behavior of the system in question or of evaluating
various strategies for its operation (Shannon, 1975).

After introducing the theories on simulation in conjunction with the object-oriented
approach to the design of information systems, we will now introduce our theory
and resulting requirements on the design of a simulation suite.

4.7 Requirements for a simulation suite

The research question was presented in chapter 1 as: Can we create a simulation
suite for decision makers that supports a studio-based decision process and im-
proves their performance when solving ill-structured, multidisciplinary problems?
We argued that such a suite would better support bounded rationality in the
context of ill structured problem solving.
The general concept of a suite and introduce the requirements for its development
are presented in this section. An elaboration of these requirements is presented in
section 4.8. To emphasize how the concept of a suite differs from traditional, more
substantive, simulation environments, we start with its definition.

Definition 4.7.1 A suite is a well chosen set of services and standards for inter- Distribution is required
in all activities of the
simulation model
cycle. We thus require
distributed simulation
model conceptualiza-
tion, specification,
experimentation and
evaluation.

connectivity; a decision support suite is thus a chosen set of services and standards
to support a decision making process.

The concept of well chosen is related to the requirements of the suite. Before
introducing these requirements, we recall the definition of a service as presented
in section 1.6.2 on page 7.

Definition 4.7.2 A service is a self-describing, open component that that per-
forms a specific function and is designed to work with other services (Papazoglou
and Dubray, 2004).

Distribution forms the pillar of this research. We argue that the creation of a
distributed simulation suite will allow us better to support simulation as a method

SIMULATION AS A METHOD OF INQUIRY 57

of inquiry; distribution enables the involvement of multiple actors in the decision
process. Distribution is required in all activities of the simulation model cycle. We
thus require distributed simulation model conceptualization, specification, experi-
mentation and evaluation.
Besides this requirement for distribution, we introduce four other requirements;
the combination forms the set of requirements for the suite to be developed in
chapter 5.

• An inquiry system supporting a model cycle should be expressible in a system
of instruments to be able to discuss the implicit premises in a common frame
of reference. This requirement is called the metatheoretical freedom (Sol,
1982).

• An inquiry system should support the construction of both a conceptual
model and a specified simulation model, each potentially in a different lan-
guage. This is referred to as a requirement for extensibility (Ören and Zeigler,
1979), or conceptualization freedom (Sol, 1982).

• The inquiry system should support the conceptualization and specification,
as well as the solution finding, by iterative analysis and synthesis. This
asks for modeling freedom leading to consistent model systems that show
a good correspondence. The structure laid down in the simulation model
should not be constrained by the way the behavior is to be simulated (Sol,
1982). Our notion of modeling freedom goes further: we argue, based on
Zeigler et al. (2000); Vangheluwe and de Lara (2002), that modeling freedom
requires the freedom of multi-formalism simulation: the freedom to apply
different formalisms on different subsystems.

• Solution finding freedom refers to the ability to generate solutions by chang-
ing the alternative space and the ways this space can be explored in view of
human cognitive constraints. The solution finding freedom requires support
for insight through animation, report generation and statistical analysis.

In the following section, we will work out these freedoms into a set of more detailed,
fine grained requirements that we will use for the development of a simulation suite.

4.8 Requirements worked out

The verb require descends from the Latin word requirere which means to seek for.
A requirement embodies the idea of a search by someone for a specific purpose and
should answer the basic question Who needs what, why do they need it? This who,
what and why question is presented in figure 4.7 as a 3-dimensional requirement

58

why

who

what

Fig. 4.7: Requirement space

space. We will gradually fill this space with the requirements for a simulation suite
in this section.
This description of these requirements is presented in an order that is similar to
the structure of this thesis. Requirements for a specific activity and for a specific
role are described based on their usefulness. We formulate the specific activity and
role with an ’activity → role’ label at the beginning of each requirement.

4.8.1 Usefulness

The concept of usefulness of decision support tools expresses the value they add to
the decision making process. It thus relates to the analytic models, the embedded
knowledge and the information resources available in a model or tool. The main
requirements supporting usefulness for a simulation suite are:

Requirement 4.1 specification → builder: a simulation suite is required to pro- A simulation suite is
required to provide:
pseudo-random
number generation,
statistical distribution
functions, time-flow
mechanisms and
statistical analysis
routines.

vide: pseudo-random number generation, statistical distribution functions, time-
flow mechanisms and statistical analysis routines (Nance, 1995).

Requirement 4.2 specification → builder: a simulation suite should enable the
incorporation of domain specific algorithms and libraries for the specification of
models. Using domain specific libraries fundamentally increases the embedded
knowledge of the system under investigation and thus the usefulness of the suite.

Sol (1982); Zeigler (1976); Zeigler et al. (2000) argue that a simulation language A simulation suite
should enable the
incorporation of
domain specific
algorithms

should provide model builders with the freedom to choose a formalism to con-
ceptualize and to specify a system under investigation. Based on the universal
formalism transformation graph of Vangheluwe and de Lara (2002), and the the-
ory of simulation (Zeigler et al., 2000), presented in section 4.3, two relations
between formalisms can be distinguished: embedding and combining relations.

SIMULATION AS A METHOD OF INQUIRY 59

A formalism is embedded in another formalism when the first formalism is ex-
pressed in the later. A formalism combines two or more formalisms whenever all
but the first formalism are subsets of the first.
Both Zeigler et al. (2000) and Vangheluwe and de Lara (2002) show that any
time dependent simulation formalism can either be embedded or combined in the
combined discrete-continuous formalism (DEVDESS). Multi-formalism modeling
therefore imposes the following requirements for a simulation suite:

Requirement 4.3 specification → builder: a simulation suite must at least pro-A simulation suite
should provide a well
interfaced DEVS &

DESS simulator.

vide model language constructs and a simulator for the combined discrete-continues
formalism (DEVDESS).

Requirement 4.4 specification → engineer: a simulation suite must support its
own extensibility with other formalisms, e.g. Petri-Net, Process-Interaction and
Forrester dynamics.

4.8.2 Usability

Usability expresses the mesh between people, process and technology. Usability
mainly depends on the interface between users and the decision support technology
(Keen and Sol, 2005). Is it web-enabled? Can it be accessed concurrently? Is the
specified layout similar to their conceptual blueprints?
Usability leads to a number of requirements for both the users and the builders
of simulation models. The most important requirements for a simulation suite
concerns the web.

Requirement 4.5 experimentation → user: to web-enable the complete suite.A simulation suite
should be

web-enabled.
This results in web-enabled execution, output analysis, specification and storage of
models, experiments and documentation.

Requirement 4.6 all → all: the services of the suite should, following the lateThe services of the
suite should be
decoupled and
potentially be

distributed over the
internet.

binding principle 3.4.8 and the design by contract principle 3.4.9, be decoupled and
potentially be distributed over the internet.

We noted the apparent paradox of concentrating on a core while equally support-
ing all Us in the introduction of this thesis. We furthermore argued that this can
only be achieved by orchestrating a suite of services to provide the required sup-
port. One of the main requirements for a simulation suite is thus to focus on its
core functionalities. Where traditional simulation environments focus on provid-
ing animation, visualization and reporting, we argue that these subjects are not
part of a simulation suite. If users are accustomed to working with spreadsheets,
flowcharts or database reporting engines, why should substitutes be included in
an all-in-one simulation environment?

60

Requirement 4.7 all activities→ engineer: the suite is explicitly required to A simulation suite only
specifies core simula-
tion functionality.

decouple the relation between a simulation core, i.e. the model and simulator, and
a suite of externally provided services, e.g. reporting or animation. This results in
sharing services among several suites. A simulation suite should thus be deployable
in a broader decision support suite.

The core notion of this research is that to provide decision support that is based
on bounded rationality, multiple actors are to be supported in a decision process.
To accomplish the support for a group of distributed actors in a simulation study,
we come to the following requirement.

Requirement 4.8 conceptualization and specification → engineer and user: a A simulation suite
must support dis-
tributed model
conceptualization and
specification.

simulation suite must support distributed model conceptualization and specification.

One misconception of traditional simulation environments is the tight integration
between experimentation and specification environments. Environments such as
Arena1, eM-Plant2 and Automod3 present one application for model execution
and model specification. We see an opposite trend in software engineering; Sun’s
slogan on the Java programming language to code somewhere, and run anywhere
clearly separates design from use.

Requirement 4.9 conceptualization and specification → engineer: a simulation A simulation suite
must decouple
applications for
execution and analysis
from those for
conceptualization and
specification.

suite must decouple applications for execution and analysis from those for concep-
tualization and specification.

4.8.3 Usage

Usage expresses the flexibility, adaptivity and suitability to organizational, tech-
nical, or social context. How hardware or software dependent is the technology?
What can be said regarding the stability, openness and reliability?

Requirement 4.10 all activities → builder and engineer: a simulation suite
should follow a standardized, well documented approach to its documentation, ex-
amples, versioning and release strategy.

Requirement 4.11 all activities → engineer and builder : a simulation suite A simulation suite
should be provided
with a set of verifica-
tion tools.

should be provided with a set of verification tools to assess both the robustness and
quality of models and of the suite itself.

1 Arena is a trademark of Rockwell software (http://www.arenasimulation.com)
2 eM-Plant is a trademark of Tecnomatix Technologies Ltd. (http://www.emplant.de/)
3 Automod is a trademark of Brooks Automation (http://www.automod.com/)

SIMULATION AS A METHOD OF INQUIRY 61

4.9 Summary

Having argued there is a need for decision support in the first chapter of this thesis,
we presented a system of concepts that define simulation as a method of inquiry
in this chapter. We introduced different modeling formalisms and described the
relation between an experimental frame, a simulator and a model. We ended thisThe focus of a

simulation suite is on
providing simulation
in a loosely coupled

set of decision support
services.

chapter with a set of requirements for a simulation suite. These requirements
distinguish a suite from traditional all-in-one simulation environments. A suite
focuses on an orchestrated set of autonomously deployed services. The focus of
a simulation suite is on providing simulation in a loosely coupled set of decision
support services. We will present such a suite, named DSOL, in the following
chapter of this thesis.

62

5. DESIGNING A SIMULATION SUITE

A full featured simulation suite called the Distributed Simulation Object Library,
i.e. DSOL, is presented in this chapter. We will start this chapter with the aim of
our design: a distributed, web-enabled, service-based conceptual overview of the
suite. We continue choosing an object-oriented programming language on which A full featured

simulation suite
called the Distributed
Simulation Object
Library, i.e. DSOL,
is presented in this
chapter.

to base the development of our suite. Then we will give an overview of existing
Java based simulation environments. We introduce the concepts underlying the
design of our suite in section 5.4. The implementation of these concepts in the
Java programming language is presented in sections 5.7 through 5.9.

5.1 Distribution forms the core of DSOL

We present the specification of the simulation suite DSOL in this chapter. Two
aspects are highlighted to emphasize the extent to which we have accomplished
the Nn-Nm-No paradigm in the design and specification of this suite: decoupling
and distribution. We argue that decoupling is the approach to use in the pursuit
of a suite of interacting, replaceable and open services. Distribution fulfills the
requirement of supporting Nn stakeholders, on Nm systems, at No locations. We
base our definition of a service on Eckel (2000):

Definition 5.1.1 A service is the specification of an object-oriented (sub)system Because internet
technologies provide
us with the ability
to deploy distributed
services in a modular
setting, we can now
put all our effort into
finding and selecting
appropriate services.

that offers a cohesive set of functionality via one or more interfaces. A service
is designed, implemented, and tested as a unit prior to integration into a suite of
interacting services, i.e. the information system.

We argue that information system development has changed over the last decades:
because internet technologies provide us with the ability to deploy distributed ser-
vices in a modular setting, we can now put all our effort into finding and selecting
appropriate services and orchestrating communication between them to produce a
tailored information system.
The required readiness for distributed use is presented in figure 5.1. In this fig-
ure we present the concept of a simulation suite: both an experiment and a
simulation model are accessible over a network. This provides users the ability
to start the latest simulation environment directly from a web site, i.e. http:

//www.simulation.tudelft.nl/dsol, and to open an experiment file from disk
which points to a third party remote web location for its simulation model (see
figure 5.1). The definitions of an experimental frame, a treatment and a replica-
tion follow the system of concepts introduced in section 4.5 on page 55. Before
we elaborate on the specification of DSOL, we present our reason for choosing an
object-oriented language.

DSOL as remote

web service

experiments

on local PC

downloadable

simulation model

web-browser

Fig. 5.1: Distributed deployment of DSOL

5.2 Choosing an object-oriented programming language

We chose to standardize on the Java programming language for the development
of a simulation suite. Java is now so ubiquitous that it might appear unnecessary
to comment on it. For example, Java is strict with respect to the specification of
object-oriented principles. Java is furthermore inherently platform independent,We chose to

standardize on the
Java programming

language for the
development of the
simulation services.

and Java contains an extensive collection of libraries to support the specification
of distributed, web-based applications.

• Java allows us to express the internal structure of the simulation suite based
on the well accepted and commonly used unified modeling language (UML)
meta-model. By choosing the Java programming language we fulfill the
requirement for a metatheoretical freedom presented on page 58.

• Java provides a strong basis for the web enabled execution of simulation
models through its libraries for distributed, web-based, communication (see
requirement 4.5 on page 60).

64

• Java allows state of the art integrated development environments (IDE),
e.g. Eclipse, to be used; these IDEs support distributed collaborative model
conceptualization and specification (see requirement 4.8 on page 61).

• A rich set of code verification and performance profiling services exist for
the Java programming language. These services support the fulfillment of
requirement 4.11 on page 61 and 4.10 on page 61.

5.3 An overview of Java based simulation environments

Numerous Java based simulation environments have been developed since the
1990s. A legitimate question is to what extent can these environments be used as a There are several

reasons why not to
base our development
on existing Java-based
simulation services.

basis for the suite to be developed in this research. Kuljis and Paul (2000) present
an overview of currently available Java based discrete simulation environments.
We will illustrate in this section to what extent these Java based environments
fulfill the requirements presented in chapter 4 and why we concluded that none of
them are suitable to be used as a basis for the design presented in this chapter.
A first issue concerns the lack of a service oriented paradigm underlying most of One, they lack a

service oriented
paradigm.

these environments. Most environments do not provide contract based services,
i.e. they do not specify classes that implement an interface and as such no interface
can be presented for remote invocation, i.e. distributed deployment. Objects are
not remotely accessible and the extension of these environments to a distributed
simulation suite is hard if not impossible to achieve. Examples of environments
which lack this service oriented paradigm are Simjava, JavaSim, and SSJ (Kuljis
and Paul, 2000; L’Ecuyer et al., 2002).
A second issue concerns the choice of formalism. Most currently available simula- Two, they do not

support more than one
formalism.

tion environments do not support more than one formalism. Since simulators used
in these environments are targeted to execute behavior according to this specific
formalism, it is difficult to redesign these environments for multi-formalism sim-
ulation. DEVSJAVA is a good example of a simulation environment specifically
targeted at Zeigler’s DEVS formalism (Zeigler and Sarjoughian, 2005).
A third issue concerns the implementation of the process interaction formalism in Three, process inter-

action is implemented
in these environ-
ments using multiple
operating system
threads.

Java. All currently available Java based simulation environments that support pro-
cess interaction have implemented this formalism using multiple operating system
threads; the approach is to use one operating system thread per process. Since the
number of threads is severely limited by the operating system, simulation models
specified in these environments normally cannot exceed 104 processes. A further
complication of this issue is that the processes in the simulation model cannot be
streamed1 over a network. This makes the distributed deployment of simulation

1 Streaming is the transfer of data in a continuous stream over a network (Eckel, 2000).

DESIGNING A SIMULATION SUITE 65

models impossible to achieve. Examples of multi-threaded process interaction in-
clude SimJava, Silk , SSJ and JSIM (Healy and Kilgore, 1997; Kuljis and Paul,
2000; L’Ecuyer et al., 2002). A more in-depth discussion on threads, Java and
process interaction is presented in section 5.6.2.
A final issue is that some available Java based simulation environments are pub-Four, they are often

published under
propriatery licenses.

lished under propriatery licenses and their inner-works are often obfuscated. In
the domain of software engineering, obfuscation means to make code harder to
understand or read, generally for privacy or security purposes: extension of these
environments is made impossible. We concluded that we would not base the design
of our simulation suite on existing environments; we focused on Java as a general
programming language as a starting point for our development.

5.4 Overview of the DSOL simulation suite

Before we zoom in on the Java implementation of individual services of DSOL,
it is important to understand that the object-oriented systems description is not
only used to conceptualize those parts of the world we want to investigate, i.e. a
simulation model, but is also applied to the conceptualization of the DSOL suite;
both the design of models and the suite are expressed in terms of the same systems
description.
A decomposition of DSOL into horizontally layered and vertically partitioned sub-
systems is presented in figure 5.2. Where the connectors illustrate the decoupled
autonomy between two partitions, the layered structures illustrate modular de-
pendencies (see principle 3.2.1 on page 37) between two layers. The red blocks of
figure 5.2 present external services used by the DSOL suite. The blue and yellow
services make up the suite and were developed during the research process pre-
sented in this thesis. The blue services are not discussed further in this thesis.
Detailed information on their design and usage can be found in Jacobs and Ver-
braeck (2004a). Before we present the services that make up the DSOL simulation
suite, we emphasize the definition and value of the concept of a service. A service
offers a cohesive set of functionalities via one or more interfaces with the aim to be
integrated into a suite of independent, potentially distributed, interacting services.
DSOL consists of the following services.

DSOL service

The core service provides a set of interfaces and classes for simulation. This service
contains discrete and continuous formalisms, the specification of the DSOL ex-The DSOL service is

the core simulation
service.

periment, continuous and discrete distributions, statistics and classes supporting
2-dimensional and 3-dimensional animation. This service is presented in sections
5.6 through 5.9.

66

language

language

language

event

event
event

logger

logger
logger

interpreter

jstats

dsol dsol-gui

introspection

dsol-xml

suite boundaries

jdomgisbeans

jFreechart
Java3D

naming

Fig. 5.2: Services making up the DSOL suite

DESIGNING A SIMULATION SUITE 67

DSOL-GUI

The collection of classes which provide a web enabled graphical user interface for
DSOL is presented in the DSOL-GUI service. We emphasize the importance ofThe collection of

classes which provide
a web enabled
graphical user

interface is presented
in the DSOL-GUI

service.

designing a good user interface, and thus fulfilling requirement 4.9 on page 61 to
separate environments for model development and for model execution, but we
have not considered this to be part of this research. A reference implementation
of a web enabled user interface is nevertheless presented with this service.

DSOL-XML service

Over the last decade, XML has become the lingua franca2 for the configuration of
applications. XML is namely a platform independent, human readable language.
The DSOL-XML service provides parsers for the DSOL experimental frame and
as such enables users to specify an experimental frame in XML. An exampleThe DSOL-XML

service provides
parsers for XML based

DSOL experiments.

is presented in appendix 9.3 on page 185. The value of this service is that it
enables the specification of experiments without having knowledge of the Java
programming language.

Interpreter service

We argued in section 5.3 that the specification of the process interaction formalism
should not be based on Java threads. To specify the process interaction formal-The interpreter service

forms the basis for the
process interaction

formalism in DSOL.

ism in Java we have developed the interpreter service: a Java virtual machine
implemented in Java. This service is presented in section 5.6.2.

JStats service

This service provides a set of continuous and discrete distribution functions andThe JStats service
provides a set of

statistical services to
DSOL.

links DSOL to external mathematical and chart libraries. Jstats forms the topic
of section 5.7.

Naming service

The naming service provides Yellow Page functionality to the DSOL suite. TheThe naming service
provides Yellow Page

functionality to the
DSOL suite.

value of a Yellow Page service is that it provides distributed objects in the sim-
ulation suite the ability to lookup each other. The naming service provides this
functionality both to simulation model objects and to those objects constituting
the DSOL suite.

2 Lingua Franca is a pidgin, trade language used by numerous language communities around
the Mediterranean, to communicate with others whose language they did not speak (Corré, 1992).

68

An example of the first category of use is a supply chain simulation model in
which retailers use the naming service to advertise their existence and to offer
their products. An example of the second category is DSOL’s animation service in
which animation panels use the naming service to lookup renderables, i.e. objects
that visualize simulation model objects.
The implementation of the naming service links DSOL to the Java Naming and
Directory Interface (JNDI) framework. JNDI provides Java applications a unified
interface to multiple naming and directory services (Sun Microsystems, 2001b).
The service provided by JNDI is described in a Context interface. All objects in
the DSOL suite use an implementation of this Context to lookup or bind objects.
A class diagram of the implementation of this service in DSOL is presented in
figure A.5 on page 184.

Introspection service

This service provides an introspection service to users; the service enables users to The introspection
service enables users
to open a simulation
model object through
a graphical user
interface.

open a simulation model object and to introspect, i.e. to see and change, attribute
values through a graphical user interface. The value of the introspection service is
that it provides the ability to downdrill on simulation objects. This service aims
to improve operational insight in the output of experimentation.

Event service

This service provides a distributed asynchronous event mechanism and thus em- The event service
provides a distributed
asynchronous event
mechanism.

bodies principle 3.4.7 on page 44. The value of the event service is that it enables
loosely coupled relations between objects in the suite. This service is described in
more detail in section 5.5.

Logger service

The DSOL simulation suite contains a logger service which is based on Java’s
logging mechanism (Sun Microsystems, 2001a). The value of this service is that
output, debug information, warnings, etc. produced by objects in the suite are
captured and, after they are filtered and formatted, presented to subscribed lis-
teners. DSOL’s Logger service provides a set of filters and formatters to provide
distributed logging.

Interdependencies in the suite

Considerable attention needs to be given to the dependencies between the different
services when developing a suite. This is emphasized by the names of the services;
services that are used by the simulation core, do not depend on simulation and

DESIGNING A SIMULATION SUITE 69

Tab. 5.1: Dependencies between the services in DSOL

lang. event logger naming jstats introsp. interpr. dsol dsol-xml
language
event •
logger • •
naming • • •
jstats • • •
introsp. • • •
interpr. • • •
dsol • • • • • • •
dsol-xml • • • • • • • •
dsol-gui • • • • • • • • •

therefore do not have the dsol prefix in their name. Services which are add-ons to
dsol start with the prefix dsol. The dependencies are illustrated in table 5.1. In
the following sections we present the specification of several of these services.

5.5 Specification of distributed asynchronous communication

Objects communicate either synchronously or asynchronously in object-oriented
programming languages. Synchronous communication implies that the invoker of
communication requests an immediate response, while asynchronous communica-
tion implies that an answer is not immediately requested (Booch et al., 1999). It
is the difference between requesting someone’s age versus requesting that one be
notified when it is someone’s birthday.
The value of asynchronous communication in enabling loosely coupled relations be-
tween objects is often wrongly neglected. Asynchronous communication prevents
disproportionate polling between objects and enables well tailored communication
between potentially distributed objects, possibly without any prior knowledge of
the class of the other object (see principles 3.4.8 and 3.4.9 on page 44). This is
fundamentally required to loosely couple services, and to deploy them on the web
(requirement 4.5 on page 60).
We look at the asynchronous distributed event model that is part of DSOL in thisWe look at the

asynchronous
distributed event

model that is part of
DSOL in this section.

section. We show how remote event listeners are registered with event producers,
and how these producers notify their subscribed listeners of state changes. We
also show how subscriptions are managed by these producers.
The domains of simulation and software engineering each regrettably use the con-

70

 notify(event: EventInterface)

EventListenerInterface

java.util.EventListener
«interface»

Fig. 5.3: Class diagram of EventListener

cept of event for a specific, different purpose. In the context of discrete event
simulation an event is defined as a change in the state of an object at an in-
stant. In the context of software engineering an event is a message sent between
objects. To prevent confusing terminology, DSOL addresses simulation events as
SimEvents .
In DSOL, event listeners are obliged to implement the EventListener interface Event listeners are

obliged to implement
the EventListener

interface.

presented in figure 5.3. The notify method specified in this interface ensures the
required callback method for event producers on future state changes. The inter-
face extends the java.util.EventListener interface which is a tagging interface
that all event listener interfaces must extend (Arnold et al., 2000).
The argument passed in the notify method is an instance of EventInterface (see
figure 5.4). DSOL provides two reference implementations of this EventInterface:
a basic Event class and a specialized TimedEvent3 class containing a time stamp;
the later is used for time based statistical computations. An event consists of
a source, a content attribute and a type. The type, i.e. EventType is used to
distinguish different sorts of events fired by a producer.
The EventProducerInterface and its reference implementation named EventPro-

ducer are presented in figure 5.5. In both the addListener4 and in the remove- Events consists of
a source, a content
attribute and an
event type. Events
are furthermore
Serializable.

Listener method we see that subscription is linked to a listener for a specific
event type.
Two remarks must be made concerning the distributed characteristics of DSOL’s
event service. One, events are Serializable. Serialization is a way of flattening,

3 We reemphasize that the TimedEvent is not an event in the context of discrete event simu-
lation. Such event is presented in section 5.6.1 as a SimEvent.

4 One of the arguments in the polymorph addListener methods is the boolean argument
named weak; all non-distributed subscriptions are weak by default. A weak reference is a reference
that does not keep the object it refers to alive; it is not counted as a reference in garbage collection
(Joy et al., 2000). If the object is not also referred to elsewhere, subscription is terminated.

DESIGNING A SIMULATION SUITE 71

 getContent(): Object

 getSource(): Object

 getType(): EventType

«interface»

EventInterface

timeStamp: double

 TimedEvent(type, source, value, timeStamp)

 getTimeStamp(): double

TimedEvent

type: EventType

 Event(type, source, content)

 getContent(): Object

 getSource(): Object

 getType(): EventType

 toString(): String

Event

«interface, interface»

java.io.Serializable

 EventType(name)

 equals(arg0): boolean

EventType
 ~ type

0..1

Fig. 5.4: Class diagram of Event & TimedEvent

72

«interface»

RemoteEventProducerInterface

«interface, interface»

java.rmi.Remote

FIRST_POSITION: short

LAST_POSITION: short

 addListener(listener, eventType): boolean

 addListener(listener, eventType, position): boolean

 addListener(listener, eventType, weak): boolean

 addListener(listener, eventType, position, weak): boolean

 getEventTypes(): EventType[]

 removeListener(listener, eventType): boolean

«interface»

EventProducerInterface

semaphore: Object

 EventProducer()

 fireEvent(eventType, value): Object

 fireEvent(eventType, value, time): Object

EventProducer

 RemoteEventProducer()

RemoteEventProducer

Fig. 5.5: Class diagram of EventProducer

DESIGNING A SIMULATION SUITE 73

pickling, or freeze-drying objects so that they can be stored on disk, and later read
back and reconstituted, with all the links between the objects intact (Eckel, 2000).
Serialization is required to send, or stream, events over a network. Two, both
the EventListenerInterface and the EventProducerInterface can be used as
remote interfaces; this is illustrated with the RemoteEventProducer class. This
fulfills requirement 4.6 on page 60 which explicitly requires objects to be deployable
on the web.

5.6 Specification of formalisms

A simulator is presented in chapter 4 as is an object, not part of the real system,
that is used to generate the behavior of the simulation model. In this chapter it
was stated that DSOL should provide both language constructs and simulator(s)
for specific formalisms, e.g. the DEVDESS formalism.
An interface diagram of the different simulators specified in DSOL is presented in
figure 5.6. The absence of classes in this figure emphasizes the decoupled, open
and service oriented, i.e. interfaced, philosophy underlying DSOL.
The SimulatorInterface interface presented in figure 5.6 extends theThe simulator

interface specifies the
formalism

independent behavior
of a simulator.

EventProducerInterface and specifies the formalism independent behavior of a
simulator. Among its methods are those for its control, e.g. the start, step and
stop method. A key characteristic of this interface is that it is abstract ; it is
formally unfinished and merely serves the purpose of a building block.
The extended DEVSSimulatorInterface and the DESSimulatorInterface add
the attributes and behavior prescribed by the discrete event (DEVS) respectively
the differential equation (DESS) formalisms. In the DEVSSimulatorInterface we
see methods for event scheduling where the DESSSimulatorInterface provides
access to a continuous time step.The extended DEVS-

SimulatorInterface
and the DESSimula-
torInterface add the

attributes and
behavior prescribed by

DEVS respectively
DESS formalism.

The DEVDESSSimulatorInterface interface extends the DEVS and DEVS sim-
ulator interfaces and embodies what Zeigler et al. (2000) define as a combining
relation between the discrete and continuous formalisms. By introducing this in-
terface we have fulfilled requirements 4.3 and 4.4 on page 60, which explicitly
require the DEVDESS formalism and unrestricted to its interface.
The final extension is the AnimatorInterface, which introduces a realtime wall
clock delay between consecutive instants of time.
To understand how specific, formalism dependent behavior is invoked, we present
the reference implementation of the SimulatorInterface in figure 5.7. In this
figure all but the final run method are formalism independent and thus imple-
mented by this class. This abstract run method specifies the formalism dependent
time advancing function and therefore has to be implemented by each subclass,
i.e. simulator, individually.

74

ANIMATION_DELAY_CHANGED_EVENT: EventType

DEFAULT_ANIMATION_DELAY: long

UPDATE_ANIMATION_EVENT: EventType

 getAnimationDelay(): long

 setAnimationDelay(miliseconds: long)

AnimatorInterface

DEFAULT_TIME_STEP: double

TIME_STEP_CHANGED_EVENT: EventType

 getTimeStep(): double

 setTimeStep(timeStep: double)

DESSSimulatorInterface

END_OF_REPLICATION_EVENT: EventType

START_EVENT: EventType

START_REPLICATION_EVENT: EventType

STEP_EVENT: EventType

STOP_EVENT: EventType

TIME_CHANGED_EVENT: EventType

WARMUP_EVENT: EventType

 getReplication(): Replication

 getSimulatorTime(): double

 initialize(replication: Replication)

 isRunning(): boolean

 start()

 step()

 stop()

SimulatorInterface

nl.tudelft.simulation.event.EventProducerInterface

EVENTLIST_CHANGED_EVENT: EventType

 cancelEvent(event: SimEventInterface): boolean

 getEventList(): EventListInterface

 scheduleEvent(event: SimEventInterface)

 setEventList(eventList: EventListInterface)

DEVSSimulatorInterface

DEVDESSSimulatorInterface

Fig. 5.6: Hierarchy between simulators

DESIGNING A SIMULATION SUITE 75

replication: Replication

running: boolean

semaphore: Object

simulatorTime: double

worker: WorkerThread

 Simulator()

 getReplication(): Replication

 getSimulatorTime(): double

 initialize(replication: Replication)

 isRunning(): boolean

 run()

 start()

 step()

 stop()

Simulator

SimulatorInterface

Fig. 5.7: The abstract run method in the Simulator class

76

actor:Actor

this : DEVSSimulator event : SimEventInterface eventList : EventListInterface

run(): void

while (this.isRunning())

removeFirst(): SimEventInterface

getAbsoluteExecutionTime(): double

fires the new simulator time
fireEvent(EventType,double,double): double

execute(): void

Fig. 5.8: The time advancing function of the DEVSSimulator

DESIGNING A SIMULATION SUITE 77

Default actor

this : DESSSimulator replication : Replication

run(): void

while (simulatorTime <= this.replication.getRunControl().getRunLength())

getRunControl(): RunControl

if (simulatorTime > this.replication.getRunControl().getRunLength())

getRunControl(): RunControl

stops if time has reached runLength
stop(): void

fires the new simulator time
fireEvent(EventType,double,double): double

Fig. 5.9: The time advancing function of the DESSSimulator

The specifications of the discrete, continuous and combined formalisms and the
sequence diagrams of their specific run method will now be presented. We will
first discuss the DEVSSimulator presented in figure 5.8. As described by Balci
(1988), simulator time is the time of the last executed event taken from the time
sorted event list. The algorithm of the run method is presented in figure A.1 on
page 177.
The time flow mechanism of the continuous DESSSimulator is shown in figure
A.2 on page 178. A sequence diagram of this time flow mechanism (illustrated
in figure 5.9) shows a continuous time advancing function. The time advancing
functions of the DEVDESSSimulator, the Animator and the RealtimeClock are
presented in appendix 9.3 on page 177. It is important to recognize that they have
a comparable structure to the specification of a formalism dependant run method.

78

absoluteExecutionTime: double

id: long

priority: short

 AbstractSimEvent(executionTime, priority)

 AbstractSimEvent(executionTime)

 compareTo(object): int

AbstractSimEvent

args: Object

method: String

source: Object

target: Object

 SimEvent(executionTime, source, target, method, args)

 SimEvent(executionTime, priority, source, target, method, args)

 execute()

 getArgs(): Object[]

 getMethod(): String

 getSource(): Object

 getTarget(): Object

SimEvent

MAX_PRIORITY: short

MIN_PRIORITY: short

NORMAL_PRIORITY: short

 execute()

 getAbsoluteExecutionTime(): double

 getID(): long

 getPriority(): short

 setID(id)

SimEventInterface

 compareTo(o): int

java.lang.Comparable

Fig. 5.10: Class diagram of discrete event formalism

DESIGNING A SIMULATION SUITE 79

5.6.1 Discrete event formalism in detail

The first formalism we describe in detail is the discrete event system specification
(DEVS). The core notion concerning DSOL’s implementation of this formalism
is that objects used in a DEVS based simulation model do not interact using a
direct method invocation, but schedule this invocation by constructing a simulation
event. Such an event encompasses the scheduled execution time, a (remote) pointer
to the source of the simulation event, a (remote) pointer to the object on which the
method is intended to be invoked and reference to the method and the arguments
with which the method is to be invoked. This mechanism is referred to as scheduledThe DEVS formalism

is implemented in
DSOL according to a

principle called
scheduled method

invocation.

method invocation (Jacobs et al., 2002).
In contrast with other formalisms, e.g. the process interaction formalism intro-
duced in section 5.6.2, objects can directly be used in a DEVS model. The only
language construct for the DEVS formalism is the SimEvent presented in figure
5.10. The implementation of the concept of scheduled method invocation is imple-
mented in the Java programming language by applying the principle of reflection
(see principle 3.4.10 on page 45).
To illustrate the DEVS formalism we will look at a customer that repeatedly
generates orders. The following piece of code, which represents a simple M/M/1
queue, illustrates the DEVS simulation event scheduling as specified in DSOL:

1 package nl.tudelft.simulation.dsol.tutorial.section25;

3 public class Customer

4 {
5 private void generateOrder()

6 {
7 try

8 {
9 //We generate an order of 2 televisions

10 Order order = new Order("Television", 2.0);

12 //Now we schedule the next action at time = time + 2.0

13 SimEventInterface simEvent = new SimEvent(this.simulator

14 .getSimulatorTime() + 2.0, this, this, "generateOrder",

15 null);

16 this.simulator.scheduleEvent(simEvent);

17 } catch (Exception simRuntimeException)

18 {
19 exception.printStackTrace();

20 }
21 }
22 }

80

The DEVS formalism is presented in lines 12-16 with the construction and schedul-
ing of a SimEvent. The scheduled absolute execution time of this event is the cur-
rent time of the simulator plus 2 5. The source and the target of the event point to
the customer. The customer schedules the generateOrder method and supplies
no arguments. The DEVSSimulator adds the event on its time sorted event list.
DSOL’s event list is implemented by a Red-Black binary tree (Wirth, 1979; DSOL’s event list is

implemented by a
Red-Black binary tree.

Wood, 1992). In contrast to Java’s reflection library, the language constructs
of DSOL’s DEVS implementation are all serializable which allows serialization of
the SimEvent and thus the distribution of the DEVSSimulator. Again this is im-
portant to fulfill requirement 4.6 on page 60, which explicitly required objects to
be deployable on the web.
The advantages of a DEVS implementation are its single threaded specification The advantages of a

DEVS implementation
are its single threaded
specification and the
lack of requirements
imposed on objects to
be used.

and the lack of requirements on objects to be used in the simulation model. In other
words, where most Java based simulation languages require a specific discrete event
class to be extended, we can schedule any method of any Java object in DSOL.
These advantages have allowed us to fulfill requirement 4.2 on page 59.

5.6.2 Process interaction formalism in detail

Specification of the process interaction formalism in DSOL forms the topic of this
section. The formal distinction between a process and an object is the fact that
a process has a control state attribute. In its control state a process stores its
reactivation point in its sequence of activities. The requirements for the Process The formal distinction

between a process
and an object is the
fact that a process
has a control state
attribute.

class, which is presented in figure 5.11, are:

• the Process class is abstract. Processes as such cannot be instantiated.
Classes extending Process are required to implement the abstract process
method and to specify the actual sequence of activities. This is according to
the principle of inheritance (principle 3.4.5 on page 42).

• the resume method is public, which expresses unlimited visibility. This is
required since an object cannot resume itself in a suspended state.

It is far from easy to access the control state of an object in the Java programming It is far from easy
to access the control
state of an object in
the Java programming
language, and ...

language, to date the approach chosen by all process-oriented simulation languages
implemented in Java is to circumvent access to the control state by implementing
the Process class on top of a Java Thread.

5 Besides this absolute scheduling, the DEVSSimulator in DSOL also supports relative schedul-
ing. The overloaded method used for this relative scheduling will now create an appropriate
SimEvent under the hood.

DESIGNING A SIMULATION SUITE 81

frameStack: Stack

simulator: DEVSSimulatorInterface

 Process(DEVSSimulatorInterface)

 hold(double)

 process()

 resume()

 suspend()

Process

Fig. 5.11: Class diagram of process interaction formalism

Since a Java thread wraps an operating system thread, and operating system
threads provide methods to suspend and resume themselves, processes extend-
ing a Java thread inherit these methods; the required functionality for the process
interaction formalism is thus inherited through the use of Java threads. Despite
the advantages of easiness and apparent correctness, this approach has some very
strong disadvantages.

• Since a Java thread wraps an underlying operating system thread, Java
threads are not serializable. Processes extending a Java thread can therefore
not be streamed over a network, i.e. distributed simulation, or stored to file
for model persistency.

• Since a Java thread wraps an operating system thread, and most operating
systems can only create a limited number of threads (2000-6000), a multi-
threaded specification severely limits the scalability of the simulation envi-
ronment on such systems.

Given these disadvantages, we explored possible approaches to single threaded im-
plementations. This was achieved with the introduction of stack swapping through
a Java interpreter. A detailed discussion of this approach can be found in Jacobs
and Verbraeck (2004b). To help us understand the concept of stack swapping,
we briefly introduce the Java virtual machine specifications (Lindholm and Yellin,
1999).
Whenever Java source code is compiled, a unique .class file is generated reflect-... we explored

possible approaches to
single threaded

implementations.

ing the compiled byte code for the particular class. Although the format of this
file may seem unreadable, it consists of integers, shorts, utf-8 characters, etc.
A .class file starts with several constants defining the name of the class, its
superclass and the set of interfaces it implements. Then the constantpool is spec-
ified. The constants in this pool are used by the fields and methods described in

82

the .class file and merely serve the purpose of preventing unnecessary bytes in
the file; a pointer to the 3rd constant in a constantpool of 255 positions occupies
only 1 byte, where duplicating a complete string will most certainly occupy more
memory.
All fields and methods of a class are described by their signature, i.e. name,
return type and possible parameters. The body of a method is specified as a list of
sequential assembly operations. The Java virtual machine specification (Lindholm
and Yellin, 1999) introduces almost 200 operations. Whenever a method is invoked,
a Java virtual machine simply sequentially executes this list of operations.
In software terms, the invocation of a method is called a frame and a stack rep-
resents a last-in-first-out (LIFO) stack of objects. A Java virtual machine uses
two types of stacks to execute the invocation of a method. One is a frame stack,
exclusive to a thread. The other is an operand stack which represents a stack for
operations and is exclusive to each frame, or method invocation. As will become
obvious from the following example, another object used in the execution of a
frame is the pool of localvariables. This pool holds all local variables of a method,
including the method-parameter values.
The execution of byte code can perhaps best be described by a simple example.
Consider a class defining two mathematical operations square and its more general
pow.
If square(4.0) is invoked, the main thread of execution creates a new frame for
this invocation and pushes this frame on top of its frame stack. Then it starts
the execution of this frame resulting in the execution of the following 4 assembly
operations:

DLOAD_0 //stack.push(localvariable(0))

ICONST_2 //stack.push(constantpool(1))

INVOKESTATIC //invoke pow(stack.pop(),stack.pop())

DRETURN //return stack.pop()

Based on the source-code presented in this example, it is not difficult to understand
that the INVOKESTATIC operation invokes the more general pow(a,2) method. A
new frame is thus created and pushed on top of the previously created frame
representing the square invocation. The thread first executes this newly pushed
frame before it resumes the DRETURN operation. The operations of the pow frame
are:

ILOAD_2 //stack.push(localvariable(2))

ICONST_1 //stack.push(constantpool(1))

IF_ICMPLE //if(..<..)

DLOAD_0 //stack.push(localvariable(0))

ILOAD_2 //stack.push(localvariable(2))

DESIGNING A SIMULATION SUITE 83

ICONST_1 //stack.push(constantpool(1))

ISUB //stack.push(stack.pop()-stack.pop())

INVOKESTATIC //invoke pow(stack.pop(),stack.pop())

DLOAD_0 //stack.push(localvariable(0))

DMUL //stack.push(stack.pop()*stack.pop())

DRETURN //return stack.pop()

DLOAD_0 //stack.push(localvariable(0))

DRETURN //return stack.pop()

Since the pow method is a recursive method, the number of frames created for
its invocation is equal to b-1. Whenever a frame returns a value, this value is
pushed on its parent frame. Then the frame is removed from the framestack and
the execution of the parent frame resumes.
The approach introduced as stack swapping works as follows: assume a Process

is paused with a hold statement. The simulator thread now:

• pops its framestack up to the point where the process method of the
Process was invoked. Since the process method is void, no return value is
pushed to the parent frame.

• stores this popped part of its framestack as the control state of the Process.

• stores the index of the last executed operation as the reactivation point of
this control state.

• continues the execution of its framestack which results in executing the next
scheduled simulation event. The suspend is now successfully accomplished.

Whenever the simulator thread resumes a Process it pushes the control state of
the process on its framestack and resumes its new top frame on the specified reac-
tivation point. In contrast to the multi-threaded and method splitting approaches
presented in Jacobs and Verbraeck (2004b), stack swapping has no constraints; it
is therefore the preferred approach for the specification of the process interaction
formalism. One remaining problem is that the Java programming language does
not provide any language constructs to access either the framestack of a thread,
or its local variables.
The approach chosen in DSOL was to develop such language constructs. These
constructs, i.e. library, can best be seen as a virtual machine implemented in
Java. A stack, a constant pool and the set of 200 operations were implemented to
accomplish the specification of this library. They make up the interpreter service
in DSOL. To prevent any overhead resulting from the use of this service, a tight
invocation scheme is used in DSOL: only invocation of pausable methods is in-
terpreted. All other invocations are not interpreted, but directly invoked through

84

reflection. With the interpreter service, we have successfully implemented the pro-
cess interaction formalism at a small expense of interpreting classes which extend
Process.
The approach for the implementation of the process interaction formalism in the
DSOL simulation suite now became:

• a Process class is specified as introduced in the class diagram in figure 5.11.
This class has one attribute called framestack which type is java.util.Stack.

• the constructor of the Process schedules on the simulator the interpretation
of the process method to be invoked at time=0.0. The interpretation is
thus scheduled!

• Starting at time=0.0, the process is interpreted sequentially and hierarchi-
cally.

The process interaction example presented in this section is drawn from the early
years of Simula ’67 (Birtwistle, 1979). In this example we consider boats entering
a port. Whenever a boat enters the port it first claims 1 jetty. After a jetty is
assigned the boat requests for 2 tugs to help it to dock its vessel. Docking takes
2 minutes after which the boat releases the tugs. Now the boat unloads its cargo
which takes 14 minutes. To leave the port the boat requests 1 tug for 2 minutes.
Once the boat has left the jetty, both the tug and the jetty are released. We merely
present the the specification of the Boat class in this chapter. The Port class and
Model class are presented in appendix 9.3 on page 181.

1 package nl.tudelft.simulation.dsol.tutorial.section45;

2

3 public class Boat extends Process

4 implements ResourceRequestorInterface

5 {
6 public void process() throws RemoteException

7 {
8 double startTime = this.simulator.getSimulatorTime();

9

10 //We request and seize one jetty

11 this.port.getJetties().requestCapacity(1.0, this);

12 this.suspend();

13

14 //Now we request and seize 2 tugs

15 this.port.getTugs().requestCapacity(2.0, this);

16 this.suspend();

DESIGNING A SIMULATION SUITE 85

17

18 //Now we dock which takes 2 minutes

19 this.hold(2.0);

20

21 //We may now release two tugs

22 this.port.getTugs().releaseCapacity(2.0);

23

24 //Now we unload

25 this.hold(14);

26

27 //Now we claim a tug again

28 this.port.getTugs().requestCapacity(1.0, this);

29 this.suspend();

30

31 //We may leave now

32 this.hold(2.0);

33

34 //We release both the jetty and the tug

35 this.port.getTugs().releaseCapacity(1.0);

36 this.port.getJetties().releaseCapacity(1.0);

37 }
38

39 public void receiveRequestedResource(final double capacity,

40 final Resource resource)

41 {
42 this.resume();

43 }
44 }

86

 DifferentialEquation(simulator: DESSSimulator, timeStep: double, numericalIntegrator: NumericalIntegrator)

 initialize(x: double, y: double[])

 notify(event: EventInterface)

DifferentialEquation

FUNCTION_CHANGED_EVENT: EventType

VALUE_CHANGED_EVENT: EventType

DifferentialEquationInterface

 dy(x: double, y: double[]): double[]

 initialize(x: double, y: double[])

 y(x: double): double[]

nl.tudelft.simulation.jstats.ode.DifferentialEquationInterface

Fig. 5.12: Class diagram of differential equation formalism

5.6.3 Differential equation formalism in detail

The last formalism discussed in this chapter is the Differential Equation System
Specification (DESS). In this formalism differential equations are solved using nu-
merical integration. Numerical integration is the approximate computation of an
integral using numerical techniques (Faires et al., 2002). The language constructs The last formalism

discussed in this chap-
ter is the Differential
Equation System
Specification (DESS).

for the DESS formalism are presented in figure 5.12.
As illustrated in figure 5.12 a differential equation must extent DSOL’s abstract
DifferentialEquation class. These subclasses thus specify the dy() method
in which the value y is specified as an array of doubles. DSOL thus expects
any nth order ordinary differential equation to be rewritten as an array of first
order differential equations. Faires et al. (2002) present a number of integration A differential equa-

tion must extent
DSOL’s abstract
DifferentialEquation
class.

techniques for ordinary differential equations (ODE). They differ in approach,
error and efficiency. As illustrated in chapter 6, different models require different
integrators.
As an example of the DESS formalism we consider the well known distance function
x(t) = 0.5at2 + v0(t) + x0, with a = 0.5, x0 = 0 and x0 = 0.

DESIGNING A SIMULATION SUITE 87

31 public class Distance extends DifferentialEquation

32 {
39 public Distance(double timeStep, short integrator)

40 {
41 super(timeStep, integrator);

42 }
48 public double[] dy(double x, double[] y)

49 {
50 return new double[]{0.5, //dspeed = a

51 y[0]}; //ddistance = speed

52 }
59 public static void main(String[] args)

60 {
61 Distance distance = new Distance(0.0001,

62 NumericalIntegrator.EULER);

63 distance.initialize(0,new double[]{0,0});
64 }
65 }

In lines 48-52 the distance is specified as a set of first order differential equations.
Lines 61-62 construct the differential equation using Euler’s numerical integration
algorithm and a time step of 0.0001. All numerical integrators provided in DSOLAll numerical

integrators provided in
DSOL are presented

in table 5.2.

are presented in table 5.2. The implementations are based on the algorithms
described in Weisstein (1999). The numerical values in this table refer to the
computational efficiency of the integrator with respect to the Euler integrator
(≡ 1.000). These measurements are based on the given equation and time step
and are conducted on a 1Ghz Pentium III, 512MB RAM system with DSOL 1.6
on JRE 1.4.2.

5.7 Specification of statistical distribution functions

In this section we discuss how to specify the probabilistic nature of the natural
phenomena under investigation in a simulation study. We start with the concept
of randomness and continue with several continuous and discrete distributions.

5.7.1 Pseudo random number generators in detail

The generation of pseudo random numbers is considered to be a requirement for
any general purpose simulation environment (see requirement 4.1 on page 59). As
Knuth (1998) explains, randomness does not refer to an individual number but to

88

Tab. 5.2: Numerical integrators implemented in DSOL

Numerical integrator Computational efficiency
Euler 1.000
Heun 0.434
Runge Kutta 3 0.289
Runge Kutta 4 0.212
Gill 0.171
Milne 0.089
Adams 0.088
Runge Kutta-Fehlberg 0.044
Runge Kutta-Cash Carp 0.043

a sequence of numbers. A uniform distribution on a finite set of numbers is one in
which each possible number is equally probable.
The next question concerns the use of random numbers. Random numbers are used
in the specification of probabilistic distributions representing the real system in
such a model. Before we explain how the uniform distribution is used as a basis for
several continuous and discrete distributions, we illustrate DSOL’s pseudo random
number generators in figure 5.13.
First a StreamInterface is presented which specifies a contract to be observed
by any generator. In using this interface we underline once more the openness
of DSOL; potential usage of competing implementations is inheritably supported
which is in line with the design by contract principle on 44.
The first generator we discuss is the Java2Random class. This class extends Java’s
reference implementation of a random number generator and enables its use in
DSOL. As specified by Arnold et al. (2000) this is a 48-bit linear congruential
random number generator with Xn+1 = (aXn + c)mod(m). In this equation a and
c are constants and m is a 48-bit modulus value (Knuth, 1998).
The disadvantages of this linear congruential method, which was introduced in DSOL provides three

pseudo random
number generators:
the 48-bit LCG, a
DX-120 generator and
a MersenneTwister
generator.

Lehmer (1951), are its relatively short period, and its questionable randomness
(L’Ecuyer, 1997). The period of Java’s 48-bit reference implementation is ≈ 1014.
Deng and Xu (2003) presented a category of high-dimensional, efficient, long-
cycle and portable uniform random number generators based on L’Ecuyer et al.
(1993); L’Ecuyer and Simard (1999). The DX-120 class in figure 5.13 specifies this
generator, the period of which is ≈ 101120.
The last generator presented in figure 5.13 is the Mersenne Twister. This genera-
tor, presented by Matsumoto and Nishimura (1998), has an astronomical period of
≈ 106000. The increased period of the latter two generators comes at the expense
of computational efficiency; the nextDouble() operation performs 18 percent less

DESIGNING A SIMULATION SUITE 89

seed: long

 Java2Random()

 Java2Random(seed: long)

 getSeed(): long

 nextInt(i: int, j: int): int

 reset()

 setSeed(seed: long)

Java2Random

 MersenneTwister()

 MersenneTwister(seed: long)

 initialize()

 next(bits: int): long

 setSeed(seed: long)

MersenneTwister

 DX120Generator()

 DX120Generator(seed: long)

 initialize()

 next(bits: int): long

 setSeed(seed: long)

DX120Generator

 getSeed(): long

 nextBoolean(): boolean

 nextDouble(): double

 nextFloat(): float

 nextInt(): int

 nextInt(i: int, j: int): int

 nextLong(): long

 reset()

 setSeed(seed: long)

StreamInterface

seed: long

 RandomNumberGenerator()

 RandomNumberGenerator(seed: long)

 getSeed(): long

 next(bits: int): long

 nextBoolean(): boolean

 nextDouble(): double

 nextFloat(): float

 nextInt(i: int, j: int): int

 nextInt(): int

 nextLong(): long

 reset()

 setSeed(seed: long)

 toString(): String

RandomNumberGenerator

 Random()

 Random(seed: long)

java.util.Random

Fig. 5.13: Random number streams

90

efficient for the DX120 and 32 percent less for the Mersenne Twister compared to
the 48-bit linear congruential method. These measurements were performed on a
1Ghz Pentium III, 512MB RAM system with DSOL 1.6 on JRE 1.4.2.

5.7.2 Statistical distributions in detail

Law and Kelton (2000) present particular algorithms for generating random vari-
ates for several commonly occurring continuous and discrete distributions. As
explained, these variates form the basis for all probabilistic simulation processes.
Law and Kelton (2000) state that there are often several algorithms that can be
used for generating variates from a given distribution. In these cases they selected
a satisfying one with respect to the tradeoff between computational efficiency and
easiness of understanding.
A class diagram of the statistical distributions in DSOL is presented in figure A class diagram of the

statistical distributions
in DSOL is presented
in figure 5.14.

5.14. The root class in this diagram defines the abstract Dist class with its stream
attribute. The Dist class is extended by two abstract classes: the DistContinuous
and the DistDiscrete class. Where the continuous distribution draws continuous
random variates, the discrete distribution returns discrete random variates. Two
specific distributions are illustrated in figure 5.14: the exponential and Poisson
distribution. All distributions currently provided by the DSOL suite are presented
in table 5.3.

Tab. 5.3: Random variates in DSOL based on Law and Kelton (2000)

Continuous distributions Discrete distributions
Beta Bernoulli
Constant Binomial
Erlang Empirical
Exponential Constant
Gamma Uniform
Normal Geometric
LogNormal Negative Binomial
Pearson 5 Poisson
Pearson 6
Triangular
Uniform
Weibull
Empirical

DESIGNING A SIMULATION SUITE 91

 Dist(stream: StreamInterface)

Dist
«interface»

nl.tudelft.simulation.jstats.streams.StreamInterface

 DistContinuous(stream: StreamInterface)

 draw(): double

 probDensity(observation: double): double

DistContinuous

mean: double

 DistExponential(stream: StreamInterface, mean: double)

 draw(): double

 probDensity(observation: double): double

 toString(): String

DistExponential

 DistDiscrete(stream: StreamInterface)

 draw(): long

 probability(observation: int): double

DistDiscrete

lambda: double

 DistPoisson(stream: StreamInterface, lambda: double)

 draw(): long

 probability(observation: int): double

 toString(): String

DistPoisson

 ~ stream

1

F
ig

.
5
.1

4
:

S
tatistical

d
istrib

u
tion

s

9
2

5.8 Specification of output statistics

The statistical objects in DSOL is presented in figure 5.15; they include a Counter,
a time independent Tally and a time dependent Persistent. Algorithms for the The statistical output

objects in DSOL are
presented in figure
5.15.

estimation of variance, standard deviation and confidence intervals come from Law
and Kelton (2000).
More important is the notion that the design of statistical objects is based on the
distributed asynchronous event model presented in section 5.5. This results in the
following characteristics of the statistical output in DSOL: The design of these

objects is based
on the distributed
asynchronous event
model.

• there is a clear decoupling between a statistics object and its event source,
i.e. producer. A model object does not have to have to know that statis-
tics are collected on its performance, but they need to be instances of the
EventProducer class in order to asynchronously fire relevant events.

• statistics objects use a filter to filter incoming events. Implementations of
this FilterInterface include a modulus filter which accepts every nth event,
and a max filter which accepts the first n events. Filters can be inverted and
combined.

• statistics objects and their event sources can be distributed over a network.
This is the result of the serializable events and the RemoteEventProducer

interface (see section 5.5).

• statistics objects are event producers and fire changes in their values, e.g.
mean and variance. These events are used by decoupled, potentially dis-
tributed charts of the DSOL-GUI service. The open source, external JFreechart6

library is used for the creation of these charts. This illustrates the openness
of the suite, the willingness to use external services and as such (partly)
fulfills requirement 4.7 on page 61 which states that only a core simulation
suite should be designed.

6 JFreeChart is a free Java class library for generating charts (http://http://www.jfree.
org/jfreechart/)

DESIGNING A SIMULATION SUITE 93

 StatisticsObject()

 getTable(): TableModel

StatisticsObject

COUNT_EVENT: EventType

N_EVENT: EventType

 Counter(description: String)

 getCount(): long

 getN(): long

 initialize()

 isInitialized(): boolean

 getDescription(): String

Counter

nl.tudelft.simulation.event.EventProducer

SAMPLE_MEAN_EVENT: EventType

SAMPLE_VARIANCE_EVENT: EventType

MIN_EVENT: EventType

MAX_EVENT: EventType

N_EVENT: EventType

STANDARD_DEVIATION_EVENT: EventType

SUM_EVENT: EventType

 Tally(description: String)

 getSampleMean(): double

 getConfidenceInterval(alpha: double): double[]

 getConfidenceInterval(alpha: double, side: short): double[]

 getMax(): double

 getMin(): double

 getN(): long

 getStdDev(): double

 getSum(): double

 getSampleVariance(): double

 initialize()

 isInitialized(): boolean

 notify(event: EventInterface)

Tally

«interface, interface, interface, interface»

nl.tudelft.simulation.event.EventListenerInterface

 accept(arg0: Object): boolean

 isInverted(): boolean

 setInverted(arg0: boolean)

«interface, interface, interface»

nl.tudelft.simulation.language.filters.Filterinterface

deltaTime: double

 Persistent(description: String)

 getSampleVariance(): double

 getStdDev(): double

Persistent

 ~ filter

1

Fig. 5.15: Output statistics

94

 ContinuousBall(simulator)

 getLocation(): DirectedPoint

ContinuousBall

RADIUS: double

 Ball()

 getBounds(): Bounds

Ball

 DiscreteBall(simulator)

 getLocation(): DirectedPoint

DiscreteBall

 Positioner(simulator)

 dy(x, y): double[]

 setValue(value)

Positioner

nl.tudelft.simulation.dsol.formalisms.dess.DifferentialEquation

 getBounds(): Bounds

 getLocation(): DirectedPoint

«interface, interface»

nl.tudelft.simulation.dsol.animation.LocatableInterface

 BallAnimation2D(source, simulator)

 paint(graphics, observer)

BallAnimation2D

 BallAnimation3D(source, simulator)

 provideModel(locationGroup)

 update(children)

BallAnimation3D

1

«use» «use»

Fig. 5.16: Animation in DSOL: the conceptual design

5.9 Specification of animation

We present DSOL’s animation features in this section. The reason for introducing The class diagram of
an animation example
is presented in figure
5.16.

this service is that, besides the contribution good animation brings to usability,
especially ease of understanding, this service serves as an excellent example of the
decoupling and distributed principles described in the introduction of this chapter.
The particular example of this section furthermore illustrates the concept of multi-
formalism simulation.
The class diagram of an animation example is presented in figure 5.16; in this A ball can be animated

by multiple instances
of both the 2D and
the 3D animation
classes.

figure balls move around. The abstract Ball class implements the Locatable inter-
face which describes the physical location of an object and specifies its getBounds
method. The bounds of an object define a convex, closed volume that is used for
various intersection and culling operations. The prescribed getLocation is for-

DESIGNING A SIMULATION SUITE 95

malism dependent and therefore implemented by the DiscreteBall respectively
the ContinousBall. A suitable DEVDESSSimulator enables the specification of
a simulation model in which continuous and discrete balls move around; hence
the concept of multi-formalism simulation. The following classes and relations are
worth discussing.

• A Positioner class is introduced to compute the time dependent position
of a continuous moving ball. Although it would be more elegant if the
ContinuousBall would extend the DifferentialEquation directly, this is
impossible: the Java programming language does not support multiple in-
heritance.

• The absence of a relation between model components, e.g. a ball, and an-
imation components, e.g. an instance of the BallAnimation class clearly
shows that animation is DSOL is based on a pull mechanism. If no anima-
tion component is instantiated, or if the current simulator is not an instance
of the Animator class, or if no graphical user interface is openend, animation
does not occur. Animation is thus completely separated from simulation.

Decoupling is achieved by the absence of a relation between the BallAnimation2D,
the BallAnimation3D and the Ball classes. Animation objects merely expect
a Locatable source, which provides required information to present a visualThe clear distinction

between a Locatable

model object and one
or more animation

objects further enables
their distributed

deployment.

representation on the correct location. As a consequence, a ball can be animated by
multiple instances of both the 2D and the 3D animation classes and an animation
class can animate both continuous, discrete and any other Locatable object (see
figure 5.17). The clear distinction between a Locatable model object and one
or more animation objects further enables their distributed deployment; hence
the concept of distribution. In such case multiple distributed animation screens
represent the same model. A screen shot is presented as an example in figure 5.17.

5.10 Summary

We introduced DSOL in this chapter: a set of loosely coupled, substitutable,
open and interacting services aimed at providing effective decision support through
simulation as the method of inquiry. DSOL forms the the piece de resistance of
this research; in it we present the core of our research and as such we presented
in this chapter our contribution to the domain of systems engineering. In chapter
4 we presented a number of requirements. Our conclusion that we have fulfilled
these requirements is presented throughout this chapter and summarized in table
5.4.
At the time of writing this thesis (2005), version 2.0.0 of DSOL was released.
This release contained over 700 classes and more than 90,000 lines of documented

96

Fig. 5.17: 2D and 3D animation of continuous and discrete event moving balls

DESIGNING A SIMULATION SUITE 97

Tab. 5.4: Summary of the fulfillment of the design requirements for DSOL

Requirement Fulfilled Page

Requirement 4.1 on page 59 (usefulness) on page 88

Requirement 4.2 on page 59 (usefulness) on page 81

Requirement 4.3 on page 60 (usefulness) on page 74

Requirement 4.4 on page 60 (usefulness) on page 74

Requirement 4.5 on page 60 (usability) on page 64

Requirement 4.6 on page 60 (usability) on page 74

Requirement 4.7 on page 61 (usability) on page 93

Requirement 4.8 on page 61 (usability) on page 65

Requirement 4.9 on page 61 (usability) on page 68

Requirement 4.10 on page 61 (usage) on page 65

Requirement 4.11 on page 61 (usage) on page 65

Java source code. This chapter is therefore the result of an insuperable tradeoff
between readability and the completeness of describing all architectural concepts.
A tutorial illustrating the ins and outs of using the suite is not included in this
thesis, however such a tutorial can be found in Jacobs and Verbraeck (2004a).
We address the verification and validity of DSOL in the following chapters. We fur-
thermore address DSOLs future and as such aim to firmly root it in the simulation
community.

98

6. VERIFICATION AND TESTING OF DSOL

The verification of DSOL forms the central theme of this chapter. Roache (1998);
Balci (1995); Sol (1982); Mitroff et al. (1974) define verification as the process of
determining that a system implementation accurately represents the developer’s The verification of

DSOL forms the
central theme of this
chapter.

conceptual description of the system. In the following sections we provide scientific
evidence for the verification of DSOL based on a substantive perspective, which
implies that DSOL is tested with respect to the correctness and completeness of
its algorithms. Testing and analyzing the simulation suite is given in section 6.2.

6.1 Expert verification through the SNE comparisons

Simulation News Europe (SNE) features a series on comparisons of simulation
software. Special features of modeling and experimentation are compared based
on simple, easily comprehensible models. The effectiveness of support of DSOL Simulation News Eu-

rope features a series
on comparisons to ver-
ify the implementation
of...

is more complex, real-life environments form the topic of chapters 7 and 8.
The features compared are for instance modeling technique, event handling, nu-
merical integration, steady-state calculation, distribution fitting, parameter sweep,
output analysis, animation, complex logic strategies, submodels, macros and sta-
tistical features (Breitenecker, 2004). For this research the implementation of these
tests served a number of goals. ...modeling tech-

nique, event handling,
numerical integra-
tion, steady-state
calculation, etc.

• Since these tests have been implemented in a number of simulation software
packages, the specification in DSOL provided a strong opportunity to verify
the mathematical algorithms and output of DSOL.

• These tests provided a strong opportunity for the validation of the com-
pleteness of the suite with respect to its features and its usefulness. This
validation is strengthened by SNE’s scientifically objective specification of
evaluation criteria.

• These tests served as attractive student assignments and their specification
serves as good tutorial material for the development community.

• The specification of these tests provided us with the opportunity to reach
the simulation community, given SNE’s willingness to publish them.

At the moment of writing Breitenecker (2004) gives the following set of tests.

1. Lithium-cluster dynamics under electron bombardment : this comparison deals
with a stiff system of the 3rd order. This comparison tests features for integra-
tion of stiff systems, for parameter variation and for steady state calculation.

2. Flexible assembly system: this comparison is targeted at discrete event sim-
ulation languages and compares features for submodel structures, control
strategies and optimization of process parameters.

3. Analysis of a generalized class-e amplifier : this comparison focuses on sim-
ulation of electronic circuits and requires features for table functions, eigen-
value analysis and complex experiments.

4. Dining philosophers I : this is a more general comparison involving simulation
and different modeling techniques, e.g. Petri nets.

5. Two state model : this comparison primarily addresses simulation tasks which
require very high accuracy. It checks integration and state event handling
with high accuracy.

6. Emergency department - follow-up treatment : this comparison addresses dis-
crete simulation languages and tests features for modeling, concepts of avail-
ability and complex control strategies.

7. Constrained pendulum: this comparison is targeted at continuous simula-
tion languages and checks features for model comparison, state events and
boundary value problems.

8. Parallel comparison: this comparison deals with the benefits of distributed
and parallel computation for simulation tasks. Three test examples have
been chosen to investigate the types of parallelization techniques best suited
to particular types of simulation tasks.

9. Canal-and-lock system: this comparison is targeted at discrete simulators
and checks features for modeling complex logic, which has to be verified by
deterministic data sets. Variance reduction capabilities are also checked.

10. Fuzzy control of a two tank system: this comparison asks for either the
availability of modules for fuzzy control or for the detailed specification of
how such modules can be implemented efficiently.

11. Dining philosophers II : this comparison reviews discrete simulators with re-
spect to simultaneous, i.e. concurrent, access to resources.

100

12. SCARA robot : this comparison is targeted at continuous simulation lan-
guages and deals with the handling of implicit systems.

13. Collision processes in rows of spheres: this comparison deals with a model
of the mechanics of spheres. The features to be compared represent a large
number of events, numerical accuracy, the iteration of a boundary value and
stochastic parameter variations. Piecewise, constant velocities permit both
a continuous and a discrete treatment.

The solutions to four of the above comparisons, implemented in DSOL, are pre- The solutions to four
of these comparisons,
implemented in DSOL,
are presented in this
section.

sented in this section. Two of the four are continuous models (1 and 3), one is a
discrete event model (6), and one test is a continuous-discrete event hybrid model
(2). The reason for selecting these particular comparisons is that besides repre-
senting well known basic problems, they illustrate some of the advantages of the
Nn-Nm-No paradigm underlying the suite. At the moment of writing this thesis,
the following tests have been implemented in DSOL and have been submitted for
publication in SNE(Jacobs, 2004): 1, 2, 3, 4, 6, 8, 9 and 10. Note, where others
contributed to the test they are named.

6.1.1 Comparison 1: lithium-cluster dynamics

The first model to be compared is taken from solid state physics. The special
features to be compared are rate equations, stiff systems, parameter sweep and
steady-state calculation.
The model describes the formation and decay of defect F-centers aggregates, i.e. The features to be

to be compared in
the first model are
rate equations, stiff
systems, parameter
sweep and steady-
state calculation;...

electron centers, in alkali halides. The defects are produced by electron bombard-
ment near the surface of the crystal and they either form aggregates or evaporate
if they reach the surface.
The variable f(t) denotes the concentration of F-centers, m(t) and r(t) respectively
denote the concentration of aggregates consisting of two M-centers or three R-
centers. The system can be easily extended to take into account the formation
of larger aggregates. The variable p(t) is the production term of F-centers due to
electron bombardment, i.e. irradiation:

dr

dt
= −drr + krmf (6.1)

dm

dt
= drr − dmm + kff

2 − krmf (6.2)

df

dt
= drr + 2dmm − krmf − 2kff

2 − lff + p (6.3)

VERIFICATION AND TESTING OF DSOL 101

 constructModel(simulator)

nl.tudelft.simulation.dsol.ModelInterface

 C1(numericalMethod)

 constructModel(simulator)

 main(args)

C1

simulator: DESSSimulatorInterface

 DifferentialEquation(simulator, timeStep, numericalIntegrator)

 initialize(x, y)

nl.tudelft.simulation.dsol.formalisms.dess.DifferentialEquation

p: double

kr: double

kf: double

lf: double

dr: double

dm: double

 FCenter(simulator, timeStep, numericalMethod, lf)

 dy(time, y): double[]

FCenter

«use»

Fig. 6.1: Class diagram of F-Center

The parameter lf measures the loss of F-centers at the surface; kr and kf are rate
constants describing the formation of an M-center out of two F-centers, or the
formation of an R-center out of an M-center and an F-center. The decay of an
R-center into an M-center and an F-center is described by the rate constant dr and
the decay of an M-center into two F-centers by the rate constant dm. Investigations
are started after constant electron bombardment p(t) = pc = 104 of approximately
10 s; the production term has to be set to zero p(t) = 0, the initial values are:
f(0) = 9.975, m(0) = 1.674, and r(0) = 84.99. The parameter values are: kr = 1,
kf = 0.1, lf = 1000, dr = 0.1 and dm = 1. The following tasks should be
performed:

• simulate the stiff system over t=[0,10] with an indication of computing time
depending on different integration algorithms

• variate lf from 102 to 104 and a plot of all f(t;lf), logarithmic steps preferred

• calculate the steady states during constant bombardment, i.e. p(t) = pc =
104, and without bombardment, i.e. p(t) = 0

Specification in DSOL

The F-Centers present a clear example of a differential equation and thus require...this requires a
continuous modeling

formalism.
a continuous modeling formalism. The class diagram of the solution is presented
in figure 6.1: classes C1 and FCenter are specifically designed for this comparison.

102

The specification of the dy method in the F-center class illustrates how differential
equations are specified in DSOL:

1 package nl.tudelft.simulation.sne.c1;

2

3 public class FCenter extends DifferentialEquation

4 {
5 public double[] dy(double time, double[] y)

6 {
7 // we create an array containing the new dy value

8 double[] dy = new double[3];

9

10 // let’s compute the particular factors.

11 double drr = this.dr * y[0];

12 double dmm = this.dm * y[1];

13 double krmf = this.kr * y[1] * y[2];

14 double kfff = this.kf * Math.pow(y[2], 2);

15 double lff = this.lf * y[2];

16

17 //now we compute and return value for dy

18 dy[0] = krmf - drr;

19 dy[1] = drr - dmm + kfff - krmf;

20 dy[2] = drr + 2 * dmm - krmf - 2 * kfff - lff + this.p;

21 return dy;

22 }
23 }

The C1 class implements the ModelInterface and constructs the model. The
numerical integrator, the number of replications and the simulator are specified
in an xml-based experiment file. This experiment file, the library containing the
model and the suite may well be hosted at different remote locations.

Task A: simulation of the stiff system over t=[0,10]

The first task is to simulate the stiff system over t=[0,10] and to indicate com- The computing times
of simulating the
system are presented
in table 6.1.

puting time depending on different integration algorithms.
The measurements presented in table 6.1 were conducted on a 1Ghz Pentium III,
512MB RAM system with DSOL 1.6 on JRE 1.4.2. The measurements are based
on 20 replications and, due to the stiffness of the ordinary differential equation,
have a time step of 0.001.

VERIFICATION AND TESTING OF DSOL 103

Tab. 6.1: Comparing numerical integrators

Numerical integrator Computing time (milliseconds) Efficiency fraction
Euler 10 ≡ 1.0
Heun 22 0.45

Runge Kutta 3 34 0.29
Runge Kutta 4 45 0.22

Adams 90 0.11
Milne 164 0.06
Gill 185 0.05

Runge Kutta-Cash Carp 192 0.05
Runge Kutta-Fehlberg 333 0.03

Task B: parameter variation of lf from 102 to 104

The first criterium used to evaluate this task is whether the variation is specified
in the model, at runtime or in a script. Since DSOL’s experimentation is based on
Ören and Zeigler (1979); Zeigler (1984) who present a 1..N relation between an
experiment and a set of treatments, script and model based specification are both
supported.
DSOL’s introspection service furthermore provides support for the alteration of
values at runtime through a graphical user interface. The statistical output of
DSOL is presented in figure 6.2. This screen provides spreadsheet alike function-
ality; statistical objects can be dragged and dropped into the table. A second
evaluation criterion is whether logarithmic plots are supported. The logarithmic
y-axis in figure 6.2 is based on the following piece of code:

3 new XYChart(

4 simulator,

5 "F-center value",

6 XYChart.XLOGARITHMIC_YLOGARITHMIC);

Task C: calculation of steady states during constant bombardment

The final task in this comparison is to calculate steady states during constant
bombardment p(t) = pc = 1.0 · 104 and without bombardment p(t) = 0.
The current version of DSOL does not provide automatic steady state computa-
tion. The calculation of the steady state values are to be based on the graphical
statistical output or on the average of the last n values received by the tally. The

104

Fig. 6.2: Parameter variation presented in a logarithmic graph.

steady state values are presented in table 6.2.

Tab. 6.2: Steady state calculations in DSOL

p(t) = 1.0 · 104 p(t) = 0
R-centers 1000.0 0.0
M-centers 10.0 0.0
F-centers 10.0 0.0

Conclusions

The main conclusion of the specification of this comparison in DSOL is that DSOL The main conclusion
is that DSOL is well
suited to simulate
continuous models

is well suited to simulate continuous differential equation models. The continuous
simulator, the abstract differential equation and the set of numerical integrators are
verified. A conclusion on the Nn-Nm-No paradigm is that the design of contract
principle encourages future development of other numerical integrators; neither
DSOL nor the model are limited to the implementations presented in table 6.1.

VERIFICATION AND TESTING OF DSOL 105

Ax

B1

B2

SySx

Fig. 6.3: Sub model of assembly system (Breitenecker, 2004)

6.1.2 Comparison 2: flexible assembly system

The following example of a flexible assembly system has been chosen because it
checks two important features of discrete event simulation environments:

• the possibility to define and combine submodes

• the method to describe complex control strategies

The model consists of a number of almost identical submodels of the following
structure (see figure 6.3). Two parallel conveyor belts, B1 and B2, are linked
together at both ends. An assembly station Ax is placed at B2. Pallets come in
on belt B1. If they are to be processed in Ax, they are shifted in Sx to B2 and
possibly enter a queue in front of Ax. If there is no more empty buffer space on
B2 or the pallet is not to be processed in Ax it continues its way along B1. Parts
that have been processed in Ax are shifted back to B1 in Sy, having priority over
those coming from the left on B1.
The total system now consists of 8 of these subsystems, varying in length, opera-The following example

of a flexible assembly
system was chosen
because it checks

important features of
discrete event

simulation
environments.

tion and operation time (see figure 6.4). Between two subsequent subsystems there
is a space of 0.4 m, pallets from the third subsystem A2 can be shifted directly to
A3, and from A6 directly to A1. The shifting parts, however, cannot function as
buffers, i.e. a pallet can only enter an Sx if it can leave it immediately.
The operation time of each station, the total length of B1 and the length of the
buffer in front of the station are presented in table 6.3.
There are three identical stations A2 in the system, because the operation in A2
takes much longer than the other operations. Unprocessed parts are put on pallets
in A1. They can either be processed in A2 first, and then in A3, A4, A5, or in
A3, A4, A5 first, and then in A2. The sequence of operations among A3, A4, and
A5 is arbitrary. Station A6 is a substitute for any of the stations A3, A4, A5,
i.e. whenever one of these stations is down, or the buffer in front of it is free, the

106

A1 A2A2A2

A5 A4 A3A6

Fig. 6.4: Layout of the assembly system (Breitenecker, 2004)

Tab. 6.3: Properties of individual assembly stations

station operation time (s) length of B1 (m) length of buffer (m)
A1 15 2.0 1.2
A2 60 1.6 0.8
A3 20 1.6 0.8
A4 20 1.6 0.8
A5 20 1.6 0.8
A6 30 2.0 1.2

VERIFICATION AND TESTING OF DSOL 107

 Processor(simulator, description, capacity, location, size, process)

 receiveObject(object)

 releaseObject(object)

Processor

 Station(simulator, description, capacity, location, size)

 getBounds(): Bounds

 getDestination(): StationInterface

 getLocation(): DirectedPoint

 getRemainingCapacity(): double

 getState(): byte

 receiveObject(object)

 receiveRequestedResource(capacity, resource)

 releaseObject(object)

 setDestination(destination)

 setState(state)

Station

lastUpdateTime: double

 Conveyor(simulator, description, capacity, location, size, speed)

 getSpeed(): Vector3d

 notify(event)

 receiveObject(palletObject)

 receiveRequestedResource(capacity, resource)

 updatePalletPositions()

 compare(object1, object2): int

PalletComparator

Conveyor

counter: int

ID: String

 Pallet(simulator, location)

 getBounds(): Bounds

 getLocation(): DirectedPoint

 hasProcessed(processName): boolean

 operation(processName)

 setLocation(location)

 toString(): String

Pallet

 ~ entries0..*

 ~ palletSet

0..*

Fig. 6.5: Class diagram of DSOL specification

corresponding operation can be executed in A6. Finished parts are unloaded in
A1, unfinished parts enter another circle.
All the conveyors are running at a speed of 18 m/min., any shifting takes 2 sec.,
and pallet length is 0.36 m. Assuming that no station ever has a breakdown, the
optimum number of pallets in the system can be found. The total throughput
time and the average throughput times of the parts have to be evaluated, when
20, 40 and 60 pallets are circulating in the system.

Specification in DSOL

The specification of this comparison largely reflects the work of Samson et al.
(2004). The first task and corresponding evaluation criterium deals with the con-
ceptualization and the specification of the model. In other words: How are the
modular sub systems of the problem description reflected in the specification of
the DSOL model?

108

130 /**

131 * Conveyors are subscribed to the TIME_CHANGED_EVENT

132 *

133 * @param event the incoming event

134 */

135 public void notify(EventInterface event)

136 {
137 if (event.getType().equals(SimulatorInterface.TIME_CHANGED_EVENT))

138 {
139 if (this.getState() != Station.SWITCHED_OFF_STATE)

140 {
141 this.updatePallets();

142 }
143 }
144 }

Fig. 6.6: The Conveyor.notify() method

A class diagram of the DSOL specification is presented in figure 6.5. In this dia-
gram the Pallet class specifies the pallets as they are moved through the assem-
bly system. The infrastructure in the system is modeled using the Station class.
Its public receiveObject operation receives pallets and schedules their release
(scheduling implies the specification in the discrete event formalism). The Station
class extends DSOL’s Resource class; this ensures an ability to request and seize
the capacity of the station. The Station class is extended by the Conveyor class
and the Processor class. The Conveyor class moves pallets through the system
and has the following characteristics:

• although the entire system is specified in the discrete event formalism Although the entire
system is specified
in the discrete event
formalism (DEVS),
the conveyor is
specified in the
continuous DESS
formalism.

(DEVS), the conveyor is specified in the continuous DESS formalism. This
is presented in figure 6.6: a conveyor is subscribed to time changed events
and will update its pallets based on the elapsed δ(time).

• it is specified as an infrastructure component which actually introspects ob-
jects for potential, three dimensional intersection; if so these objects, i.e.
pallets, are moved

• it uses an underlying binary tree with corresponding comparator, i.e. the
PalletComparator, to sort and store pallets

Animation is used to present the behavior of the system. A class diagram pre-
senting the loosely coupled structure between a model component, i.e. the Pallet

VERIFICATION AND TESTING OF DSOL 109

 Pallet(simulator, location)

 getBounds(): Bounds

 getLocation(): DirectedPoint

 hasProcessed(processName): boolean

Pallet

 PalletRenderable(pallet, simulator)

 paint(graphics, observer)

 selectImage(): int

PalletRenderable

«use»

Fig. 6.7: Class diagram of Pallet animation

class, and its two-dimensional visualization component is presented in figure 6.7
The PalletRenderable uses the pallet to visualize a state based pallet. In this
particular example the animation thus depends on the size of the pallet, on its
location and on the stations that are completed.
A number of pallets are presented in figure 6.8. Since some of the side branch
conveyors presented in this figure have reached their maximum of four pallets,
some pallets follow the main conveyor. After a pallet is processed in the side
branch, the number of the particular station is presented underneath the pallet
image. Junctions, mergers and processors are colored green whenever their state
is processing.
A final evaluation criterium of this particular comparison deals with the specifi-A final evaluation

criterium of this
particular comparison

deals with the
specification of the

statistics in the model
(see figure 6.9)

cation of the statistics in the model. The sample-mean, minimal and maximum
service times are plotted as a function of the number of pallets in figure 6.9. These
values correspond to the values presented by other solutions (Breitenecker, 2004).
The logarithmic plots in this chart are fed by ExitProcess which is specified as
follows:

2 double serviceTime = this.simulator.getSimulatorTime()

3 - ((Double) this.pallets.get(pallet)).doubleValue();

4 super.fireEvent(PALLET_SERVICETIME_EVENT, serviceTime, this.simulator

5 .getSimulatorTime());

Conclusions

In this particular comparison we have shown the strength of multi-formalismIn this particular
comparison we show

the strength of
multi-formalism

modeling.

modeling. While the behavior of the Processor is specified in a discrete event
formalism, i.e. the DEVS formalism, the behavior of the conveyor is specified in
the continuous DESS formalism. We have further shown that object orientation

110

Fig. 6.8: Animation of the assembly system

enables the design of highly modular simulation models and that DSOL is well
suited for the simulation and animation of this type of complex, infrastructure
models.

6.1.3 Comparison 3: generalized class-E amplifier

This example is taken from the electrical engineering world. The basic class-E
power amplifier was introduced by Sokal and Sokal (1975). It is a switching-mode
amplifier that operates with zero voltage and zero slope across the switch at switch
turn-off. The actual numerical example is taken from Mandojana et al. (1990).
The component values presented in figure 6.11 are: V DC = 5 volt, L1 = 79.9 ·10−6

henry, C2 = 17.9 · 10−9 farad, L3 = 232.0 · 10−6 henry, C4 = 9.66 · 10−6 farad and
RL = 52.4 ohm.
The time dependent resistor R(t) models the active device acting as a switch with
an ON resistance of 0.05 ohm and an OFF resistance of 5.0·6 ohm. An extreme
ON resistance of value zero ohm will result in a pathological system, e.g. a system
behaving neurotic because it is suddenly short circuited. Furthermore the DC
voltage source will be short circuited through the ideal coil L1. R(t) is given in
the graph of figure 6.11 as a function of time:
The duty ratio is 50%. The period is 10−6 seconds, i.e. the frequency is 100 kHz.
The rise/fall time is TRF = 10−15 seconds.

VERIFICATION AND TESTING OF DSOL 111

Fig. 6.9: Service times of pallets in the assembly system

_
+

VDC R(t) C2 x2 RL VL

+ C4L3L1

x4x3x1 +

+

-

-
-

1 2 3 4

Fig. 6.10: Class-E amplifier (Breitenecker, 2004)

112

0 time5E-6TRF 10E -6

5.0E-2

5.0E+6

R(t) ONOFF

Fig. 6.11: Resistance function of the amplifier (Breitenecker, 2004)

The equations describing the circuit may be the state-equations where inductor
currents and capacitor voltages are chosen as system variables. Using the Kirchhoff
voltage and current laws we get the following differential equations:

L1

dx1

dt
= −x2 + V DC (6.4)

C2

dx2

dt
= +x1 −

x2

R(t)
− x3 (6.5)

L3

dx3

dt
= +x2 − RL ∗ x3 − x4 (6.6)

C4

dx4

dt
= +x3 (6.7)

where the variables are as follows: x1 = I · L1 (the current of L1), x2 = V C2 (the
voltage of C2), x3 = I · L3 (the current of L3) and x4 = V C4 (the voltage of C4).
Note that normally the setup of state equations demands a topological analysis of
the circuit excluding some inductor currents and capacitor voltages as candidates
for system variables, e.g if there is a loop of N capacitors then only N-1 of these
may be given an arbitrary initial charge.

Task A: Calculation of the eigenvalues of the system

The first task is to calculate the eigenvalues of the system in the ON-period: The first task of
this third comparison
is to calculate the
eigenvalues of an
amplifier,...

R(t)=0.05 ohm and in the OFF-period: R(t)=5.0 · 106 ohm. The underlying phi-
losophy of DSOL is to provide a set of core simulation services (Jacobs et al., 2002;
Jacobs and Verbraeck, 2004b). Where possible DSOL uses open source, generally

VERIFICATION AND TESTING OF DSOL 113









−3941.591492 + 833295.62856i
−3941.591492− 833295.62856i

−108995.029583 + 661370.168244i
−108995.029583− 661370.168244i









Fig. 6.12: Eigenvalues of the system with R(t)=OFF=5.0 · 106









−1.117318 · 109

−625.786362
−112931.033798 + 658368.705292i
−112931.033798− 658368.705292i









Fig. 6.13: Eigenvalues of the system with R(t)=ON=5.0 · 10−2

availableexternal services (requirement 4.2 on page 59). Examples include geo-
graphical information services, the Java 3D animation libraries, and in the case of
eigenvalue computation, CERN’s colt package.
Colt is an open source library for high performance scientific and technical com-...for which we use the

COLT library
developed by the

European
Organization for

Nuclear Research
(CERN).

puting in Java (Hoschek, 2002). Colt was developed by the European Organization
for Nuclear Research (CERN). Computing the eigenvalues of the ODE is a very
straightforward task. The getEigenValues operation of the Amplifier class il-
lustrates its specification:

63 public EigenvalueDecomposition getEigenValues(double time)

64 {
65 double[][] matrix = {{0, -1 / l1, 0, 0},
66 {1 / c2, -1 / (c2 * this.r.getValue(time)), -1 / c2, 0},
67 {1 / l3, 0, -rl / l3, -1 / l3}, {0, 0, 1 / c4, 0}};
68 return new EigenvalueDecomposition(

69 new DenseDoubleMatrix2D(matrix));

70 }

One of the evaluation criteria of this task is the specification of the stepped resis-
tance function. DSOL does not provide a pre-defined Heaviside1 step function, i.e
a function that is often used as a switch. A Resistor class was specified which
getValue() function is based on a time modulus period algorithm.

1 H(x) =

{

0 x < 0

1 x > 0

114

Task B: Simulation of the system over the time interval [0, 10−4]

The second task was to simulate the system over the time interval [0,10−4] sec with
the zero-solution as initial state. Time curves of the state variables, the current
in the switch resistor IR(t) = x2/R(t) and the output voltage VL = x3*RL are
wanted.

Fig. 6.14: Results of simulating the stiff system over t=[0, 10−4] sec.

The graphical output of the numerical integration of the stiff system is presented The graphical output
of the numerical
integration of the stiff
system is presented in
figure 6.14.

in figure 6.14. The same set numerical integrators presented in comparison 1 can
be used. Hybrid or analytical approaches are not supported by DSOL.

Task C: a parameter variation study over the time interval [0, 9 · 10−6]

The final tasks was a parameter variation study over the time interval [0, 9 · 10−6]
sec with initial solution equal to the final solution at 100 · 10−6 sec from task b.
The rise/fall time TRF should be varied through the values: 1.0 ·10−15, 1.0 ·10−11,
1.0 · 10−9, 1.0 · 10−7 sec. The phase plane curves of dx3/dt = VL3 as a function of
x3 = I · L3, i.e the voltage difference V2-V3 as a function of the current I · L3 are
wanted. Time curves of the current in the switch resistor IR(t) = x2/R(t) and the
output voltage VL = x3*RL, are wanted.

VERIFICATION AND TESTING OF DSOL 115

Fig. 6.15: Results of the parameter variation study over t=[0, 9 · 10−6] sec.

The outcome of this task is presented in figure 6.15. Parameter variation is speci-
fied in the experiment definition presented in appendix 9.3. Parameter variations
are thus completely automated. Object orientation makes the re-initialization of
the Amplifier with the outcome of task B a straightforward task:

51 Amplifier amplifier = new Amplifier(

52 (DESSSimulatorInterface) simulator, 1E-15);

53

54 //We initialize with a null state and computed until 100E-6

55 amplifier.initialize(0.0, new double[]{0, 0, 0, 0});
56 amplifier.initialize(0.0,amplifier.y(100E-6));

Conclusions

Besides illustrating the correctness of the numerical integrators and the ability
to simulate stiff systems, the first task of this comparison illustrates a unique
characteristic of DSOL. The Nn-Nm-No paradigm focuses on using external, well
verified and validated services wherever possible; the computation of eigenvalues
was delegated to CERN’s colt package.

6.1.4 Comparison 6: emergency department

Casualties of accidents are admitted to an emergency department to have their
wounds dressed. Broken limbs are put in plaster. After a few days a follow-up
examination must be performed to monitor the healing process. If necessary, ad-

116

ditional treatment will be administered. Follow-up treatment in the emergency The process inter-
action formalism
is chosen for the
specification of this
emergency department
case because...

department of a hospital is the discrete process investigated in this comparison.
The emergency department comprises the following facilities for follow-up treat-
ment:

• registration where casualties are assigned to casualty wards 1 or 2; here the
necessity for further treatment is established.

• waiting area, i.e. people waiting to enter casualty wards 1 and 2.

• two casualty wards CW1 and CW2; with two doctors each but with CW2

staffed only by less experienced doctors for attention to simple cases.

• X-ray room with two X-ray units, where two patients can be X-rayed at the
same time.

• a room where plaster casts are applied or removed.

Patients start arriving at 7.30 a.m. and queue for registration; doctors start work
at 8.00 a.m. They attend to four types of patients.

1. Patients requiring X-rays. These patients are first examined in the casu-
alty ward, then sent to the X-ray room, and before they leave their X-ray
photographs are examined once again on the casualty ward.

2. Patients requiring removal of plaster casts. These patients enter a casualty
ward, are sent to the plastering room, then leave the department.

3. Patients with plaster casts requiring an X-ray and renewal. These patients
enter the casualty ward, are sent to the X-ray room and given new plaster
casts. After the new plasters are checked by X-ray patients are readmitted
to the casualty ward to hear the results of their X-ray from a doctor. They
then leave the department.

4. Patients needing wound dressings to be changed. These patients are admit-
ted to a casualty ward, the dressing is changed and then leave the depart-
ment.

VERIFICATION AND TESTING OF DSOL 117

waiting room

registration

casualty ward 1 casualty ward 2

exit

plaster
room

X-ray examination
room

Fig. 6.16: Layout of the emergency department (Breitenecker, 2004)

118

Tab. 6.4: Triangular distributions of process times

Process minimum average maximum
Registration 0.2 0.5 1.0

CW1 1.5 3.2 5.0
CW2 2.8 4.1 6.3
X-ray 2.0 2.8 4.1
Plaster 3.0 3.8 4.7

The statistical parameters are as follows:

• the time between arrivals of patients is distributed exponentially with pa-
rameter 0.3 minutes.

• the percent distribution of patients over the four groups described above is
as follows: 1: 35%, 2: 20%, 3: 5%, 4: 40%.

• 60% of patients waiting for admission to a casualty ward are admitted to
ward CW1, 40% to CW2. The parameters of the single treatment points
show a triangular distribution presented in table 6.4.

• patients wait in queues before every treatment point.

Task A: determine average overall treatment time

The first task is to determine the average overall treatment time for 250 patients ...the conceptual in-
troduction of the case
presents independent
autonomous patient
processes.

and to classify these patients by types 1 to 4. The evaluation criteria are the spec-
ification of the control and the classification of patient. The process interaction
formalism is chosen for the specification in DSOL because the conceptual intro-
duction of the case presents independent autonomous processes of patients (see
figure 6.17). The output presented in table 6.5 reflects the following specification
of the process method:

36 public class Patient extends Process implements ResourceRequestorInterface

37 {
49 private EmergencyDepartment emergencyDepartment = null;

52 private int type = -1;

61 public Patient(final EmergencyDepartment emergencyDepartment,

62 final DEVSSimulatorInterface simulator, final int type)

63 {
64 super(simulator);

VERIFICATION AND TESTING OF DSOL 119

65 this.emergencyDepartment = emergencyDepartment;

66 this.type = type;

67 }
68

72 public void process() throws SimRuntimeException, RemoteException

73 {
74 double startTime = super.simulator.getSimulatorTime();

75 // we request registration

76 Department registration = this.emergencyDepartment.getRegistration();

77 registration.requestCapacity(1.0, this);

78 this.suspend();

79

80 // now we are being registered

81 this.hold(registration.getServiceTime().draw());

82

83 // let’s release registration

84 registration.releaseCapacity(1.0);

85

86 // Let’s claim a doctor

87 CasualtyWard casualtyWard = this.emergencyDepartment.getCasualtyWard();

88 casualtyWard.getDoctor().requestCapacity(1.0, this);

89 this.suspend();

90

91 // now we are being helped

92 this.hold(casualtyWard.getServiceTime().draw());

93 casualtyWard.getDoctor().releaseCapacity(1.0);

94

95 // Let’s see what to do

96 switch (this.type)

97 {
98 case 1 :

99 this.xRay();

100 break;

101 case 2 :

102 this.plaster();

103 break;

104 case 3 :

105 this.xRay();

106 this.plaster();

107 this.xRay();

120

108 // we claim the same ward again

109 casualtyWard.getDoctor().requestCapacity(1.0, this);

110 this.suspend();

111

112 // now we are being helped

113 this.hold(casualtyWard.getServiceTime().draw());

114 casualtyWard.getDoctor().releaseCapacity(1.0);

115 break;

116 }
117 System.out.println(this.simulator.getSimulatorTime() - startTime);

118 }
119

120 /**

121 * processes type 1 patients

122 *

123 * @throws RemoteException on remote failure

124 * @throws SimRuntimeException on simulation failure

125 */

126 protected void xRay() throws RemoteException, SimRuntimeException

127 {
128 // Let’s claim the xRay

129 Department xRay = this.emergencyDepartment.getXRayRoom();

130 // xRay.requestCapacity(1.0, this,Resource.MAX_REQUEST_PRIORITY);

131 this.suspend();

132

133 // now we are being xRayed

134 this.hold(xRay.getServiceTime().draw());

135 xRay.releaseCapacity(1.0);

136 }
137

144 protected void plaster() throws RemoteException, SimRuntimeException

145 {
145 //plaster the patient

154 }
176 }

VERIFICATION AND TESTING OF DSOL 121

 CasualtyWard(doctors, serviceTime)

 getBounds(): Bounds

 getDoctors(): Resource

 getLocation(): DirectedPoint

 getServiceTime(): DistContinuous

CasualtyWard

 Doctor(simulator, description, capacity)

 Doctor(simulator, capacity)

Doctor

 EmergencyDepartment(simulator)

 getCasualtyWard(): CasualtyWard

 getPlasterRoom(): Department

 getRegistration(): Department

 getXRayRoom(): Department

EmergencyDepartment

 Department(simulator, capacity, serviceTime)

 getServiceTime(): DistContinuous

Department

type: int

 Patient(emergencyDepartment, simulator)

 plaster()

 process()

 xRay()

Patient

nl.tudelft.simulation.dsol.formalisms.process.Process

 ~ casualtyWards

0..1

 ~ doctors0..1

 ~ xRayRoom

0..1

 ~ plasterRoom0..1 ~ registration 0..1

 ~ emergencyDepartment0..1

Fig. 6.17: Class diagram of the emergency department case

Tab. 6.5: Task A: overall treatment times
Type Average treatment time (minutes)

1 227
2 164
3 223
4 159

overall 201

122

Task B: assume that an experienced doctor from CW1 replaces one of the
inexperienced doctors in CW2

Assume that an experienced doctor from CW1 replaces one of the inexperienced Specification of the
assumption that
an experienced
doctor from CW1

replaces one of the
inexperienced doctors
in CW2...

doctors in CW2 as soon as the queue for CW2 exceeds 20 patients. The CW1 doctor
moves to CW2 to continue working as well as he can. Note that the working time
of the doctor from CW2 now working in CW1 is increased by 20% due to the more
complex cases he or she has to deal with. As soon as the queue for CW2 is down
to five people the inexperienced doctor still working in CW1 is returned to CW2.
The alteration of the model with respect to this assumption is straightforward in ...is straightforward

in DSOL, because
the use of the
asynchronous event
package.

DSOL. DSOL’s Resource class extends the EventProducer class and fires events
on length changes of the queue. The subscription by the experienced doctors on
this particular event type accomplishes the task.

8 public class ExperiencedDoctor extends Doctor

9 implements EventListenerInterface

10 {
15 public ExperiencedDoctor(final DEVSSimulatorInterface simulator,

16 final double capacity, final Doctor juniorColleagues)

17 {
18 super(simulator, capacity);

19 this.juniorColleages = juniorColleagues;

20 this.juniorColleages.addListener(this,

21 Resource.RESOURCE_REQUESTED_QUEUE_LENGTH);

22 }
24 public void notify(final EventInterface event)

25 {
26 if (event.getType().equals(Resource.RESOURCE_REQUESTED_QUEUE_LENGTH))

27 {
28 long queueLength = ((Number) event.getContent()).longValue();

29 if (this.helping && queueLength <= 5)

30 {
31 // undo the prior swap

32 } else if (queueLength > 20 && !this.helping)

33 {
34 // start with the swap.

35 this.setCapacity(1.0);

36 }
37 }
38 }
39 }

VERIFICATION AND TESTING OF DSOL 123

The results show little impact on the overall treatment time: the doctors replace-
ment occurred one time and the two doctors changed back to their original casualty
wards before the simulation was stopped. This shows clearly that changing the
logic in this way does not improve the treatment time.

Task C: to minimize the standard deviation of overall treatment time by
introducing a priority ranking.

Try to minimize the standard deviation of overall treatment time by introducing
a priority ranking. Patients entering one of the treatment points for the second
time, i.e. type 1 and type 3 patients, rank higher in priority than all other patients.
The specification in DSOL of this task is straightforward. Whenever an amount of
capacity is requested from a resource, a priority can be assigned to this request; no
dedicated engineering was required for this task. This functionality is presented
in the partial class diagram of DSOL’s Resource class in figure 6.18.

DEFAULT_REQUEST_PRIORITY: int

MAX_REQUEST_PRIORITY: int

MIN_REQUEST_PRIORITY: int

 Resource(simulator, description, capacity)

 requestCapacity(amount, requestor, priority)

Resource

Fig. 6.18: Partial class diagram of DSOL’s Resource class

Conclusions

The specification of the emergency department comparison clearly verifies theThe specification of
this comparison

clearly verifies the
specification of the
process interaction

formalisms in DSOL.

specification of the process interaction formalisms in DSOL. The resource library
furthermore facilitates a prioritized resource allocation scheme. By using an object-
oriented programming language, the identification of individual instances and
types of patients is inherently supported.

6.1.5 General conclusions on the SNE comparisons

An overview of the implementation of the SNE comparisons is presented in table
6.6. The content of this table represents the solutions published on the SNE web-

124

Tab. 6.6: Overview of the implementation of SNE comparisons

Simulation environment 1 2 3 4 5 6 7 8 9 10 11 12 total

ACSL • • • • • • • 7
AnyLogic • • • • • • • • • 9
Arena • • • • 4
Automod • 1
CSIM • • 2
Desire • • • 3
Desmo • • 2
DOSIMIS • 1
Dymola • • • • • 5
Dynast • • 2
Enterprise Dynamics • 1
EXTEND • • 2
GPSS • • • • • 5
IDAS • • 2
Maple • • • • • • 6
Mathematica • • • 3
MATLAB • • • • • • • • 8
MicroSaint • • • • 4
MOSYS • • • 3
MATRIX • • • 3
NAP2 • • 2
PowerSim • • 2
Prosign • • 2
SDX • • 2
SIL • • 2
Simnon • • • 3
SIMUL R • • • • • • • • 8
Simple++ • • • 3
SLAM • • 2
SLX • • • • • 5
STEM • • • • 4
Taylor • • • • 4
WITNESS • 1
DSOL • • • • • • • • • 9
total (34) 20 17 15 7 8 10 14 5 6 10 5 7

VERIFICATION AND TESTING OF DSOL 125

page (Breitenecker, 2004). A number of conclusions can be drawn. One, DSOL
is positioned at the top end with respect to the number of solutions provided for
the SNE comparisons. Two, DSOL supports multi-formalism simulation; both
continuous and discrete simulation is supported. Three, the resemblance between
patterns of bullets between different environments reflects the fact that these en-
vironments are either targeted at discrete or continuous simulation.
A more general conclusion is that in solving the SNE comparisons we have used
external services, e.g. CERN’s colt service; we have thus provided the first scientific
evidence for the value of a service oriented simulation suite.

6.2 Testing and analyzing the DSOL suite

The testing and analyzing of the DSOL suite forms the topic of this section.The testing and
analyzing of the

DSOL suite forms the
topic of this section.

Numerous tools and techniques are presented in this section which are all based
on the accepted claim that test-driven development, or test-first programming,
improves software quality and programmer confidence (Kaufmann and Janzen,
2003). The use of these tools results from requirement 4.11 on page 61.

6.2.1 Code formatting and style checking

One of the tools used throughout the development process of DSOL is Checkstyle;Checkstyle automates
the process of

checking the style of
Java source code.

this is a development tool which helps programmers to write Java code that adheres
to a strictly defined coding standard. It thus automates the process of checking
the style of Java source code by enforcing a rigid coding standard (Burn, 2003).
To illustrate the value of code formatting, we consider a simple example in which
two methods are specified, both of which divide two numbers, a and b.

3 public static double DO(double a, double B)

4 {if (B!=0)return a/B;

5 throw new RuntimeException("ILLEGAL");}
6

7

8 /**

9 * divides a by b

10 *

11 * @param a a represents the first number

12 * @param b a represents the number by which a will be divided

13 * @return the fraction a/b

14 */

15 public static double divide(final double a, final double b)

16 {

126

17 // Let’s prevent a division by zero

18 if (b != 0)

19 {
20 return a / b;

21 }
22 // we must throw an appropriate exception

23 throw new IllegalArgumentException("Cannot divide" + a

24 + " by b since b=0.0");

25 }

Although the first method named DO (lines 3-5) returns exactly the same value
as the method divide (lines 8-25) when invoked with two numbers, the latter is
much easier to understand. Checkstyle enforces code that adheres to a strictly
defined coding standard and as a result would enforce the problems illustrated in
figure 6.19 to be solved.

Fig. 6.19: An example illustrating the use of Checkstyle

A coding standard results in good quality code with respect to human readability
and standardization (Joy et al., 2000). The standard enforces naming conventions,
visibility conventions to ensure encapsulation and size conventions, i.e. line width,
method length and file size. A report on the extent to which DSOL complies
to style standards is published at http://www.simulation.tudelft.nl/dsol/

dsol/checkstyle-report.html.

VERIFICATION AND TESTING OF DSOL 127

6.2.2 Unit testing

Another tool used throughout the development of DSOL is Unit testing. This im-
plies testing individual software units or groups of related units (Link and Frolich,
2003). The rationale behind Java Unit testing is that without automated testing,
it is time consuming and difficult to ensure that changes will not break existing
code. For Java programmers, JUnit makes such testing easy (Morris, 2003).
A unit test ensures that individual software components produce expected results,Unit testing implies

testing individual
software units or
groups of related

units.

thus fulfilling their contract. All DSOL services are accompanied with correspond-
ing JUnit testing classes. An example of a JUnit test is presented in appendix 9.3
on page 186. The use of Assert statements which are to be evaluated by the JUnit
suite is presented here.
A report on the results of DSOL’s JUNIT tests is published at http://www.

simulation.tudelft.nl/dsol/event/junit-report.html.

6.2.3 Profiling

A profiler is a computer program that can track the performance of another pro-
gram by checking informations collected while the code of the second program is
executed. A profiler can identify the time used by or frequency of use of various
operations of the second program. The rationality of using a profiler is that a
suitable performance analysis tool supports the tracing of the following types of
problems:

• semantic incorrectness: methods have a semantic meaning which can beA profiler mainly
supports the tracing

of semantic
incorrectness and

inefficient methods.

checked through profiling. For example, the number of times the generate

method is invoked on a customer generator indicates the semantic correctness
of a Generator class.

• inefficient methods: methods coded for flexibility and generality can cause
significant performance problems when used extensively in larger applica-
tions. For example, developers often discover that an inordinate amount of
time is spent in Java String methods.

• memory management: Kazi et al. (2000) explain that Java’s garbage collec-
tion appears to have been optimized for applications with a relatively small
memory footprint. As a result, large applications can experience unaccept-
ably large and unpredictable delays during garbage collection.

To illustrate the value of profiling DSOL, we recall the process interaction exam-
ple presented in section 5.6.2 on page 81 in which we consider boats entering a
port. Profiling gives insight in both the performance loss and the correctness of

128

Fig. 6.20: Results of profiling a simple process interaction model

VERIFICATION AND TESTING OF DSOL 129

implementation. The results of profiling this particular example are presented in
figure 6.20. The following facts presented in this figure are worth discussing.

• The thread call tree for the WorkerThread is presented in the upper part of
figure 6.20. This thread is 100% dedicated to the execution of the
DEVSSimulator.run() method. The thread call tree furthermore shows that
the Interpreter and the Resource classes are used for the execution of this
model.

• 90.25% of the execution time of this WorkerThread is spent on the
Process.<init> method which represents the constructor of the Process

class. This implies that the performance loss of the process interaction for-
malism is mostly related to the initialization of the model. This is in line
with what we expected; the real Java virtual machine has to load 300 classes
of the interpreter; the interpreter then has to re-parse the Boat class.

• The constructor of the Process class is invoked 3 times by the WorkerThread.
This suggests that the process interaction formalism is indeed single threaded.

• The final line illustrated in figure 6.20 shows that 24 instances of the SimEvent
class are executed; this proofs that the process interaction formalism is em-
bedded in the DEVS formalism (see section 4.3 on page 49).

Although the example presented in this section was chosen subjectively, we have
shown the value of applying a profiler on both the DSOL suite and on particular
models for the tracing of problems and the improvement of code with respect to
its efficiency.

6.3 Conclusions

We presented the verification of DSOL in this chapter. We based this verification
on two aspects: a verification based on SNE’s comparasions and a quality analysis
based on software testing and analyzing techniques.
We assumed in this chapter that the collection of comparisons presented by (Bre-We conclude that

DSOL is verified for
the domain of

simulation

itenecker, 2004) consists of the combined experts opinions on the completeness
and correctness of a simulation environment. We specified a wide range of dis-
crete, continuous and hybrid problems in DSOL and have verified that the output
corresponds to the output presented in (Breitenecker, 2004). We thus conclude
that DSOL is verified for the domain of simulation.
We showed how DSOL was linked to an external mathematical library for the
computation of eigenvalues of a system in section 6.1.3; and how DSOL is linked
to an external profiler in section 6.2.3. How we used an external software package

130

to check the extent to which both the models created in DSOL and the core of
DSOL comply to pre-defined coding standards is discussed in section 6.2.1.
Where the usefulness of a traditional simulation environments is limited to its rigid
set of provided functionalities, the DSOL suite is, because of its open structure,
well suited to be linked to any Java based external library. Since none of the
above external services were aimed at the domain of simulation, we can draw the
conclusion that it is proven that using a simulation suite provides more useful
decision support than traditional simulation environments.
The quality of the suite was furthermore assessed using several verification tools to
fulfill the requirement 4.11 listed on page 61 which states that software engineering This conclusion forms

the basis for the
real-life validations
presented in chapters
7 and 8.

verification tools should be applied to verify the quality of the DSOL source code.
This correspondence and completeness check forms the basis for the validation of
the DSOL suite presented in chapters 7 and 8.

VERIFICATION AND TESTING OF DSOL 131

132

7. CASE: EMULATION WITH DSOL

7.1 Introduction

A case study conducted for TBA Nederland is presented in this chapter. This case
study is presented as an instrument in the validation of DSOL with respect to its
effectiveness for simulation; we will draw some first conclusions on the usefulness,
usability and usage of DSOL at the end of this chapter. We aim to present scientific
evidence that a simuation suite indeed provides more effective decision support.
TBA is a simulation consulting firm active in the domain of logistic business process
(re)engineering using simulation and emulation (TBA Nederland, 2000). TBA’s
areas of expertise includes (re)design of manufacturing processes, airport capacity
systems, i.e. luggage and cargo systems and container terminals.
The case presented in this chapter concerns an emulation study conducted for
Dycore b.v., a concrete floor manufacturer. The value of this case for our research The case presented in

this chapter concerns
an emulation study
conducted for Dycore
b.v., a concrete floor
manufacturer.

results from the conditions under which it was conducted: the case study was done
as a competition between a team of developers from TBA and a team from Delft
University of Technology. TBA’s team, which consisted of two senior engineers,
used their de-facto simulation environment, eM-Plant1, while the TU Delft team,
which consisted of the author of this thesis, used DSOL. The idea behind this real
life, real time competition, was for TBA to be able to assess to what extent DSOL
is a serious alternative to eM-Plant and whether they might wish to use it in the
future for emulation projects. For our research, this case provided us with a means
to make a good comparison of DSOL with a commercial simulation environment
in a realistic operational setting. As we will show throughout this chapter, the
conditions at Dycore provided the base for a useful case for a comparison and
validation of DSOL.
We introduce the case in section 7.1.1, then we discuss the importance of emulation
in the design of control systems in section 7.1.2. We conclude the introduction of
this chapter with a requirement analysis.
A conceptual model of the case is presented in section 7.2. The emulation bot-
tleneck, i.e. the communication between the realtime system and the simulation

1 eM-Plant is an object-oriented simulation environment trademarked by Technomatix (http:
//www.emplant.de)

Fig. 7.1: Sheet piling floors (Dycore, 2004)

model, forms the topic of section 7.2.1. The specification of the model in DSOL
and a comparison with the specification in em-Plant is presented in section 7.3.
After presenting the experiments in section 7.3.4, we conclude this chapter with
conclusions on DSOL’s applicability in the domain of emulation. Note, this chapter
has been read and its content has been endorsed by TBA Nederland and Dycore.
The content of this chapter reflects the paper ’Emulation with DSOL’ (Jacobs
et al., 2005b).

7.1.1 60m3 of concrete floors on an automated guided vehicle

Dycore is a concrete floor manufacturer that produces annually more than 3,000,000m3

of concrete floors for the Dutch and global markets. Dycore employs more than
500 employees in their combined facilities. All their production plants are KOMO2

certified and comply to the NEN ISO 90013 standards.
The case presented in this chapter deals with the production of sheet piling floorsThe case presented in

this chapter deals with
the production of

sheet piling floors at
the manufacturing
plant in Breda, the

Netherlands.

at the manufacturing plant in Breda, the Netherlands (see figure 7.1).
The production of sheet piling floors is fully automated. All machines, sensors,
conveyors, cranes and vehicles are controlled by a programmable logic controller ,
or PLC. A partial layout of the factory in Breda is presented in figure 7.2. This
part is called the bewapeningsomloop which is best translated as the reinforcement
gallery.
In figure 7.2, 10 rectangles represent locations where pallets containing up to 18
floors can be positioned. Horizontal movement from positions 208 to 205, 201 and
200 is effected using motors named M208, M2051, M2012, etc. Vertical movement
of the pallets is achieved by automatic guided vehicles called pups4. Three of
these pups move synchronously from position 207 to 204 and from position 203 to

2 KOMO is a hall-mark of the SBK foundation (http://www.komo.nl).
3 NEN is the Dutch institute for normalization (http://www.nen.nl).
4 Pup is a direct translation of the Dutch word hondje, or little young dog.

134

208

B012 M208 B214 B013

R
O

L
D

E
U

R
A

4
1

0

=
1

0
0

+
2

(TRALIEMACHINE)

BK9

10

204

B06

205

B08

206

207

B010

A
2

0
7

0

M2072

M2071

+
4

5
-A

2
0

7
1

M2051

M2052

A
2

0
7

2

UITSTAPELKRAAN

+
4

6
-A

2
0

7
3

A101

A
2

0
7

4

+
4

7
-A

2
0

7
5

B07

B09

B011

B214

209

B014

201

B02

202

203

B04

A
2

0
3

0

M2032

M2031

+
4

8
-A

2
0

3
1

M2012

M2011

A
2

0
3

2

INSTAPELKRAAN

+
4

9
-A

2
0

3
3

A
2

0
3

4

+
5

0
-A

2
0

3
5

B015

B03

B05

BK8 200

B00 M200 B01

F
ig

.
7
.2

:
L
ayou

t
of

rein
forcem

en
t

gallery
(D

y
core,

2004)

C
A

S
E
:
E
M

U
L
A
T

IO
N

W
IT

H
D

S
O

L
1
3
5

209. Besides the motors and the pups, a number of other input/output objects
are illustrated. The small rectangles in the corner of each pallet location represent
sensors and BK8, BK9 and A410 represent manual emergency stops. Two stacking
cranes place and remove the pallets from position 204, respectively position 209.
Dycore commissioned TBA to test a newly designed and developed programmableThe aim was to debug

an engineered control
system in the lab - not

on the factory floor.

logic controller. The aim of this commissioning was to debug the engineered system
in the lab - not on the factory floor, for the following reasons. One, the two shift
production that is realized at this plant should not be disturbed; testing can only
take place during more costly night and weekend hours. Two, operators should be
trained in an environment in which the actual operation is not to be disturbed.

7.1.2 The importance of emulation in the design of realtime control

Testing the behavior of a PLC, which controls one or more devices that are part of
a logistic system, is usually done by connecting the PLC to stand-alone versions of
each individual device, called mock-ups (Schludermann et al., 2000; Schiess, 2001).
This approach to device testing is expensive and the test conditions are hard to
reproduce. Above all these test are incomplete since the interaction of a device
with other devices is ignored and the system as such cannot be tested as a whole
(Schludermann et al., 2000; Schiess, 2001).
Emulation is a hardware-in-the-loop approach that is designed to solve this in-Emulation is a

hardware-in-the-loop
approach to

simulation that is
designed to test the

behavior of a real
(control) system.

completeness. Emulation implies that all inputs and outputs of a controller are
connected to simulated devices. This enables better reproduction of test condi-
tions and allows the tester to reproduce the interaction of various parts of the
complete system (Schludermann et al., 2000). Whorter et al. (1997) state that us-
ing the same model for system development, system testing using emulation and
staff training, can reduce costs and plant set-up times.

7.1.3 Expectations for the case

We expected DSOL to perform better than its traditional counterpart, i.e. eM-
Plant, for a number of reasons which are given.

• The service oriented, open architecture underlying DSOL should make theIn this particular case,
the emulation model

is used to test the
behavior of a PLC,

which controls one or
more devices that are

part of a logistic
system.

deployment of an emulation model in a distributed, networked environment
more straightforward. It should, in other words, be more straightforward to
link DSOL to external components, e.g. a PLC.

• The multi threaded, scalable characteristics of the Java programming lan-
guage should make DSOL more effective in the performance-defiant domain
of emulation.

136

• The support for CAD drawings in combination with the inclusion of Java’s
3D modeling should give DSOL advantage with respect to the straightfor-
wardness of infrastructure modeling.

• DSOL clearly distinguishes a model from a simulator. This distinction sup-
ports the usage of one model for system development, system testing and
training purposes.

The value of this case for the validation of DSOL was is found in the opportunity
provided support these claims in a real time, real life case. A specification of the
requirements for the emulation model is given below.

7.1.4 Requirement analysis

To help us understand the requirements for an emulation model of the reinforce-
ment gallery, we will first briefly introduce the internal structure of a PLC. The
major components of a PLC are its CPU, its memory, its power supply, its inputs
and its outputs : where inputs provide a PLC with the ability to read signals from
different input devices, e.g. sensors and buttons, and outputs provide a way for a
PLC to control output devices, e.g. motors and cranes.

Requirement 7.1 The first and most important requirement for the case is that
the emulation model may not impose any modifications to the PLC for testing
purposes. Such modification would conflict with the nature of emulation which is
to test the actual system.

Data exchange between a PLC and physical devices is based on special industrial
protocols. This leads to a second requirement for our emulation model.

Requirement 7.2 The emulation model should support the industrial data ex- The emulation model
should support
the industrial data
exchange protocol
used by Dycore’s PLC.

change protocol used by Dycore’s PLC.

Memory in a PLC can be distinguished into system memory and user memory.
System memory is used by a PLC for its internal process control system. The user
memory contains a user program in a binary form. User memory is divided into
blocks having special functions. Some parts of the memory are used for storing
input and output status. The real status of an input is stored either as ”1” or as
”0” in a specific memory bit. The combination of 16 bits is called a word, and
each input or output has one or more corresponding bits in memory. An example
of two lamps is presented in figure 7.3 to illustrate how memory is used to control
specific devices. Other parts of memory are used to store variable contents for
variables used in user program. For example, timer value, or counter value would
be stored in this part of the memory (Matic, 2001).

CASE: EMULATION WITH DSOL 137

Register

7

value=1; b
urn!

bit address 5

value=0; off!

0 1

Fig. 7.3: An example of controlling two lamps.

A PLC reads its inputs and sends its outputs on a regular basis. This time interval
is called the period of the PLC. Since this period defines the accuracy of the control
system and as such of the controlled devices, a second requirement is that

Requirement 7.3 The emulation model should meet the realtime period of theThe emulation model
should meet the

realtime period of the
PLC.

PLC.

To ensure that an emulation model meats this real time constraint, emulation
requires an underlying real time operating system (Schludermann et al., 2000).

Requirement 7.4 In situations where an emulation model is nevertheless de-
ployed on standard, i.e. non real time, operating systems, e.g. Linux or Microsoft
Windows, the emulation environment should report backlog as it occurs.

Where both requirements focus on the usefulness of the emulation model, TBA
presented a further set of requirements with respect to the usability of the testing
environment.

Requirement 7.5 The emulation model should animate all devices in realtimeThe emulation model
should animate all

devices in realtime on
top of the CAD

layout. All simulated
devices should further

be controllable at
runtime through a

graphical user
interface.

on top of the CAD layout which was well known to the controllers of the physical
system.

Requirement 7.6 All simulated devices should be controllable at runtime through
a graphical user interface provided by the emulation model. This implies clicking
on a simulated device and stopping or resuming its operation, creating failures,
pressing buttons, etc.

7.2 Conceptualization

According to Banks (1998) conceptualization implies the abstraction of a real sys-
tem using a conceptual model, i.e. a series of mathematical and logical relations
between objects. This conceptual model underlies both the DSOL specification

138

n-16

n

n+16

n+32

n+48

n+64

n+80

n+96

1 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0

PLC Memory Registers

16-bit word (= 1 register)

input register (read and write)

register (read only)

co
n
ta

in
s

Fig. 7.4: The memory of a programmable logic controller

presented in section 7.3 and TBA’s eM-Plant specification. In this section a clear
distinction is made between the control system and the controlled system. The
control system, i.e. the PLC controls the controlled system, i.e the simulated de-
vices in the emulation model. We start in section 7.2.1 with a conceptual model
of the control system, i.e. the PLC. We continue in section 7.2.2 with the concep-
tual model of the controlled system, i.e. the DSOL emulation model. In section
7.2.3 we discuss the communication between the emulation environment and the
real time PLC, and we conclude this section with conceptual models of the overall
architecture.

7.2.1 The conceptual model of the control system

To understand how the control system functions, it is necessary to reiterate what
we stated in the introduction of this chapter, i.e. that the inner works of a pro-
grammable logic control are based on changing bit values of internal memory
addresses. This is illustrated in figure 7.4. The memory of a PLC is divided in a
number of registers, i.e. data elements containing 16 bits. A clear, but subjective, The memory of a

PLC is divided into a
number of registers,
i.e. data elements
containing 16 bits.

distinction is made between that part of the memory in which write operations
take place, and that part which is read-only for external devices to support the
consistency of the PLC. The registers that are read by external devices are called
Registers, while those registers used for writing are called InputRegisters.
Some inputs and outputs use more than one bit to read or write a specific value. While input registers

are registers used for
writing data from a
(simulated) device
into the PLC, registers
are read-only registers
used for reading data.

For example, consider an automated guided vehicle the speed of which is presented
as a double value, i.e. a double value in Java. In this specific case, 32-bits are
needed to store this speed value, and as such two InputRegisters are dedicated to
the speed of a specific vehicle.

CASE: EMULATION WITH DSOL 139

7.2.2 The conceptual model of the controlled system

The conceptual model of the DSOL emulation model, i.e. the controlled system is
presented, in this section. We introduce three types of devices (see figure 7.5) to
illustrate the emulation model.

• Input devices which only send data to the programmable logic controller.
Examples of this type include a sensor, an emergency button and a GPS-
device.

• Output devices which only receive data from the programmable logic control.
Examples of this type include a lamp and a siren.

• Combined devices which both send and receive data to the programmable
logic controller. Examples include a motor, the operation of which is con-
trolled (or received), and which might send emergency events.

A number of remarks must be made with respect to the conceptual diagram pre-
sented in figure 7.5. One, the terminology is rather confusing. Although the name
Interface might suggest that a Java interface is meant, it represents an abstract
class specifying the interface between a simulated device and a PLC. Two, a 0..N

associative relation is presented between an interface and a specific device. This
illustrates the fact that several simulated devices may share the same interface.
Three, we see that combined devices are associated with both input and output
interface. Four, the interface in figure 7.5 is associated with the PLC. Having
introduced conceptual models of the control system and the controlled system, a
more detailed conceptual model of the communication between the control system
and the controlled system is presented in the following section.

7.2.3 The model-PLC interface

The emulation model must conform to the PLCs industrial Modbus communication
protocol to ensure that no modification has to be made on the PLC. Modbus is an
application layer messaging protocol that provides client/server communication
between devices connected on different types of buses or networks (Modicon,The emulation model

must conform to the
PLCs industrial

Modbus
communication

protocol.

1996). Modbus can furthermore be accessed over a reserved system port 502 on
the TCP/IP stack.
Modbus offers services specified by function codes, which are elements of re-
quest/reply protocol data units (Modicon, 1996). A Master-Slave concept is ap-
plied in the field of programmable logic controllers to govern the lower level com-
munication behavior on a network using a shared signal cable (Modicon, 1996).
This concept is presented in figure 7.6; and it shows somewhat counter-intuitive
terminology.

140

<<Interface>>

- plc

OutputInterface

- inputRegister

- bitRange

+ read (): value

InputInterface

- register

- bitRange

+ write(value)

Flow meter Lamp
Engine

 1..1

 0 .. N

 1..1

 0 ..N

 1..1

 0 ..N 0 ..N

 1..1

extends extends

Fig. 7.5: A conceptual model of devices.

master
(i.e. client)

slave
(i.e. server)

1: request

2: response

Fig. 7.6: The Modbus master-slave concept

CASE: EMULATION WITH DSOL 141

Tab. 7.1: Basic Modbus functions (Modicon, 1996)

Name Type Access Visual representation

discrete input single bit read-only

discrete output, i.e. coil single bit read-write

input register 16-bit word read-only

output register 16-bit word read-write

A number of basic public functions have been developed in the Modbus protocol
for exchanging data that is typical for the field of automation. These functions
are presented in table 7.2.3.
Any TCP/IP based implementation of the protocol should extend the protocol
data units with an IP specific header. As we will show in the next section, aA detailed, reliable

and above all high
performance

implementation of this
protocol is crucial for

using emulation for
PLC testing purposes

successfully

detailed, reliable and above all high performance implementation of this protocol
is crucial for using emulation for PLC testing purposes successfully.
The conceptual architecture for the emulation model is presented in figure 7.7.
On the left, the programmable logic controller (PLC) is attached to the TCP/IP
network. On the server side of the network a Java implementation of the Modbus
protocol ensures adequate communication with the PLC. To minimize the amount
of communication over the network, this communication library is connected to a
shadow memory of the PLC which is part of the emulation model. The shadow
memory limits communication in the following ways.

• Although all registers are read periodically from the PLC, the shadow mem-Emulated components
either write to this

shadow memory, and
thus to the PLC, or
are asynchronously

subscribed to changes
on the memory
addresses which

control their behavior.

ory will only fire value change events whenever input values, i.e. values to
be written into the memory of the PLC, are actually changed.

• The shadow memory only sends changed input registers values to the PLC.

Emulated components either write to this shadow memory, and thus to the PLC, or
are asynchronously subscribed to changes on the memory addresses which control
their behavior. A sensor is an example of such writing, i.e. of an input, component,
while a crane is an example of a reading, i.e. of an output, component. The
behavior of, and interaction between, components in the emulation model is time
dependent and this requires a simulator.

142

PLC (client)

simulatorm
o
d
b
u
s

Java
Modbus

Implementation

PLC shadow

memory

m
o
d
b
u
s

Sensor
Sensor

Sensor

Sensor
Sensor

Crane

DSOL

TCP/IP
network

JAMOD

Java based emulation model

F
ig

.
7
.7

:
T

h
e

em
u
lation

arch
itectu

re

C
A

S
E
:
E
M

U
L
A
T

IO
N

W
IT

H
D

S
O

L
1
4
3

7.3 Specification

The next activity in the design of the emulation model was to specify the model
in DSOL. We begin in section 7.3.1 with the specification of the Modbus-DSOL
communication. We continue with the specification of the simulated devices in
DSOL in section 7.3.2.

7.3.1 Modbus communication with DSOL

As argued in the introduction of this thesis, great emphasis is placed on the useful-
ness of the simulation suite based on the ease with which developers can integrate
or communicate with external libraries and services (see requirement 4.2 on page
59).
Although Modbus communication is required for this case to be successful, a Java
implementation is clearly not considered among the tasks for a general purpose
simulation suite. A Google5 search on Java Modbus presented an open source
implementation of this protocol named Jamod6. While the development of a ded-
icated eM-Plant-Modbus library took several (≈ 3) weeks, the availability of this
verified, validated and documented library allowed us to achieve DSOL-Modbus
communication within hours. This we consider to be a scientific validation of theThe availability of the

off-the-shelf, verified,
validated and

documented Jamod
library allowed us to

achieve
DSOL-Modbus

communication within
hours.

value of service oriented computing applied to a simulation suite.
The seamless integration between DSOL and Jamod is presented in figure 7.8. The
class diagram illustrates how the shadow memory, the input registry and DSOL’s
event library provide the communication between the PLC and the emulated de-
vices.
The ModbusMemoryImage class specifies our implementation of the shadow memory.
It implements Jamod’s ProcessImageImplementation interface which embodies a
set of operations for resolving and installing the basic functions presented in table
7.2.3. The interface is implemented by our ModbusInputRegister class, which
extends DSOL’s EventProducer class. The ModbusMemoryImage further imple-
ments DSOL’s EventListener interface and is asynchronously notified whenever
the bit value of an input register is changed. The ModbusOutputRegister follows
the same structure, but is, because of readability, not presented in this figure.

7.3.2 The specification of emulation components

A class diagram of one of the simulated devices is presented in figure 7.9. For
reasons of readability only this simple component, i.e. the sensor, is presented.
All other input and output devices are specified in a similar manner.

5 http://www.google.com/search?hl=en&q=Java+Modbus&btnG=Google+Search
6 http://Jamod.sourceforge.net

144

REGISTER_CHANGE_EVENT: EventType

reference: int

value: BitSet

 ModbusInputRegister(reference)

 getBitValue(bitIndex): boolean

 getReference(): int

 getValue(bitIndex, length): BitSet

 getValue(): int

 isValid(): boolean

 setBitValue(bitIndex, value): boolean

 setValue(arg0)

 setValue(value)

ModbusInputRegister

nl.tudelft.simulation.event.EventProducer

 getValue(): int

 isValid(): boolean

net.wimpi.modbus.procimg.InputRegister
«interface»

 addDigitalIn(digitalIn)

 addDigitalOut(digitalOut)

 addInputRegister(inputRegister)

 addRegister(register)

 removeDigitalIn(digitalIn)

 removeDigitalOut(digitalOut)

 removeInputRegister(inputRegister)

 removeRegister(register)

 setDigitalIn(address,digitalIn)

 setDigitalOut(address, digitalOut)

 setInputRegister(address, inputRegister)

 setRegister(address, register)

net.wimpi.modbus.procimg.ProcessImageImplementation
«interface»

changedInputCoils: SortedMap

changedInputRegisters: SortedMap

inputCoils: SortedMap

inputRegisters: SortedMap

offset: int

outputDiscretes: SortedMap

outputRegisters: SortedMap

 ModbusMemoryImage()

 ModbusMemoryImage(properties)

ModbusMemoryImage

 notify(event)

nl.tudelft.simulation.event.EventListenerInterface
«interface»

«use»

Fig. 7.8: DSOL-Jamod interdependence

CASE: EMULATION WITH DSOL 145

STATE_CHANGED_EVENT: EventType

 AbstractSensor(name, targets, inverted)

 isAlwaysOff(): boolean

 isState(): boolean

 notify(event)

 setAlwaysOff(alwaysOff)

AbstractSensor

bounds: Bounds

location: DirectedPoint

 Sensor(name, targets, inverted)

 Sensor(name, targets)

Sensor

name: String

simulator: DEVDESSSimulatorInterface

 Device(name)

 getName(): String

Device

STATE_SIGNAL: String

bitSet: BitSet

sensor: AbstractSensor

 SensorInterface(sensor)

 getValue(signalName): BitSet

 notify(event)

 setValue(signalName, value)

nl.tba.dycore.emulation.interfaces.SensorInterface

excelParser: ExcelParser

modbusInputs: Map

 AbstractInterface()

 addModbusInput(deviceName, signalName)

 addModbusOutput(deviceName, signalName)

 getValue(signalName): BitSet

 notify(event)

 setValue(signalName, value)

nl.tba.dycore.emulation.interfaces.AbstractInterface

nl.tba.modbus.ModbusInput

«use»

Fig. 7.9: The Sensor emulation component

146

The Sensor class extends the Device class. The fact that a sensor has no embed-
ded knowledge of any communication protocol is illustrated in figure 7.9. Since
only semantic operations, e.g. the isState() operation, are implemented, this
simulated device class could well be included in a more general purpose simulation
library.
Specific bitwise Modbus memory updates are accomplished by the SensorInterface
class. This class is asynchronously subscribed to state changes of the sensor
to ensure a loosely coupled, efficient communication protocol. The principle of
inheritance (see section 3.4.5 on page 42) is applied with the creation of the
AbstractInterface class. This abstract class uses the ModbusInput shown in
figure 7.8.
We expected a more elegant simulation model due to our ability to use Java’s Instead of defining

hard coded relations
which would inevitably
result in emulated
objects moving over
predefined tracks, the
DSOL model uses
3-dimensional bounds
to see whether objects
intersect.

3D library. Instead of defining hard coded relations which would inevitably re-
sult in emulated objects moving over predefined tracks, the DSOL model uses
3-dimensional bounds to see whether objects intersect. To illustrate this function-
ality, we present the detect method of a Sensor below:

225 /**

226 * detects a locatable object

227 *

228 * @return whether the sensor has detected a Locatable

229 */

230 private boolean detect()

231 {
232 try

233 {
234 //We compute the space we can currently oversee.

235 Bounds view = BoundsUtil.transform(this.getBounds(), this

236 .getLocation());

237 for (Iterator i = this.targets().iterator(); i.hasNext();)

238 {
239 LocatableInterface locatable = (LocatableInterface) i.next();

240 if (view.intersect(BoundsUtil.transform(locatable.getBounds(),

241 locatable.getLocation())))

242 {
243 //Our view intersects with this target.

244 return true;

245 }
246 }
247 } catch (Exception exception)

CASE: EMULATION WITH DSOL 147

248 {
249 Logger.warning(this, "detect", exception);

250 }
251 //Nothing detected

252 return false;

253 }

The current view, i.e. the volume representing the range of sight, of the potentially
moving sensor is computed in line 235. This view is an instance of Bounds, which
defines a convex, closed volume that is used for various intersection and culling
operations. In line 240 the intersects method is invoked on this view. The
targets, e.g. pallets or cars, are provided as an argument; these targets are
resolved from a context (specified by the naming service described on page 68).

7.3.3 The specification of the DSOL-PLC communication

Schludermann et al. (2000) discuss time constraints in an emulation model. These
constraints impose great challenges on the simulation environment and on the
underlying operation system. To understand these challenges we illustrate the
activity sequence of DSOL’s simulator, i.e. the realtime clock.
Every time period the simulator sends the input part of the shadow memory to
the PLC over the Modbus protocol. Then the simulator reads the output memory
from the PLC and notifies subscribed listeners, i.e. Modbus outputs, in case theThe DSOL emulation

model was designed
with two high-priority

threads, i.e. the
simulator thread and
the communication
thread, and one low

priority animation
thread.

values have changed. These Modbus outputs block the simulator thread while they
invoke mapped semantic operations on the device they control, e.g. crane.stop().
After completing this notification, the simulator fires an update animation event,
and the CAD based graphical user interface will be redrawn.

---%

Tally: Backlog of ModbusConnectionThread %

N=8840 MAX=305.0 MIN=-35.0 AVG=-29.9495475113 STD=16.00013964397 %

---%

Fig. 7.10: The measured backlog (milliseconds) in the DSOL-PLC communication

The reinforcement welding equipment at Dycore requires a maximum time period
of 30 · 10−3 seconds. For the emulation to succeed, DSOL’s emulation framework
must guarantee the above sequence is completed within this period. The DSOL
emulation model therefore was designed with two high-priority threads, i.e. the
simulator thread and the communication thread, and one low priority animation

148

thread. The loosely coupled relation between component behavior and animation
furthermore ensured that while the refresh rate of the model was related to the
period of the PLC (≈ 35 Hz), the refresh rate of the animation could be slower
(≈ 5 Hz). The value of this distinction is that the increased priority of the commu-
nication thread allowed the required period of the emulation model to be reached
(see figure 7.10). Although the values presented in figure 7.10 show that DSOL
was in general well able to communicate every 30 · 10−3 seconds with the PLC,
there were occasions when a positive backlog occurred.
Because of Java’s ability to spread tasks over multiple threads and to differentiate
their priorities, DSOL outperformed eM-Plant by a wide margin in this task7. This
achievement supports the value of interface based design. The openness of the
simulation suite invited us to design a specific, performance aware RealTimeClock
class which implements the SimulatorInterface.

7.3.4 Experimentation

We present the graphical user interface of the Dycore emulation model in figure Although the values
presented in figure
7.10 show that DSOL
was in general well
able to communicate
every 30·10−3 seconds
with the PLC, there
were occasions when
a positive backlog
occurred.

7.11. In this user interface the underlying Autocad files are rendered by an exter-
nal, open source, geographical information system service named Gisbeans (Jacobs
and Jacobs, 2004). We consider the ease of using this external service, which is in
no way related to the domain of simulation, to again act as a validation for the
service oriented paradigm (see principle 3.2 on page 37). The popup screen titled
H2031 illustrates how devices can be individually and independently controlled
(fulfilled by the introspection service described on page 69).

7.4 Conclusions

The most important question yet to be answered is to what extent this case sup-
ports our hypothesis that a service based simulation suite provides more effective
decision support. To answer this question we need to clarify the differences be-
tween the two specifications and link them to our Nn-Nm-No approach towards the
design of decision support systems.
The first appearance of the Nn-Nm-No paradigm underlying DSOL is the seam-
less integration of several off the shelf libraries and services. Poi8 was used to
read/write Microsoft Excel files, Gisbeans was used to render CAD files and Jamod
was used to communicate over the Modbus protocol. This is in clear contrast with
the eM-Plant implementation developed by TBA. The communication between

7 Although we have not been given detailed information on the performance of TBA’s eM-
Plant model, the claim of DSOL substantially outperforming eM-Plant has been made by TBA’s
engineers.

8 http://jakarta.apache.org/poi/hssf/

CASE: EMULATION WITH DSOL 149

Fig. 7.11: The graphical user interface

150

the eM-Plant emulation model and the PLC required dedicated, proprietary engi-
neering. We have shown that the service oriented architecture underlying DSOL
enabled us to select required services, and thus to tailor the suite for this specific
case study. We conclude we have provided scientific evidence to support the value
of service oriented architecture for the effectiveness of DSOL as a decision support
system.
The openness of the DSOL platform proven to be crucial for meeting the perfor-
mance constraints of the case. The fact that tasks can easily be dispersed over
several threads, each with a specific priority meant that the performance of DSOL’s
realtime clock outperforms eM-Plant substantially.
The loosely coupled relation between component behavior and animation ensured
that while the refresh rate of the model was related to the period of the PLC (≈ 35
Hz), the refresh rate of the animation could be slower (≈ 5 Hz)9. The value of this
distinction is that through the increased priority of the communication thread,
the required period of the emulation model could be reached (see figure 7.10).
Although the values presented in figure 7.10 show that DSOL was in general well
able to communicate every 30 · 10−3 seconds with the PLC, there were occasions
were a positive backlog occurred. This justifies further research on the applicability
of DSOL on a real-time operating system. We conclude that this case study
has provided evidence for a loosely coupled structure between the model and its
environment; we furthermore conclude that this was essential for the usefulness of
DSOL in the context of emulation.
The inclusion of Java’s 3D model resulted in a track-less infrastructure model. The
sensors, conveyors and cranes can actually scan their neighborhood for pallets to
be moved or lifted. Such a three-dimensional library is not available in the eM-
Plant specification, which results in more constraining, dedicated relations between
infrastructural objects if eM-Plant is used.
As these differences show, the Nn-Nm-No paradigm underlying DSOL especially The Nn-Nm-No

paradigm underlying
DSOL especially
seems to show its
added value whenever
models require
sophisticated domain
specific challenges.

seems to show its added value whenever models require sophisticated domain spe-
cific challenges. While traditional simulation environments are designed for a one
purpose, one formalism and one target audience, this case clearly shows the added
value to be gained from an interacting, open simulation suite.

9 These measurements are conducted on a 1Ghz Pentium III, 512MB RAM system with DSOL
1.6 on JRE 1.4.2.

CASE: EMULATION WITH DSOL 151

152

8. CASE: FLIGHT SCHEDULING AT KLM

The development of a flight plan acceptance model for the Royal Dutch Airlines,
KLM, is presented in this chapter. Like the case study presented in chapter 7, the
case study presented in this chapter serves as an instrument in the validation of
DSOL with respect to its effectiveness for simulation. The focus of this case study
is different though; where the focus of the Dycore case study was on the usefulness
of DSOL, improved usability and usage form the primary goals of this case study.
The content of the case, i.e. the plan acceptance process, is presented in section
8.1.1. We present the challenges and requirements of the case in section 8.1.2
and illustrate the value of this case for our research. A conceptual model of the
delivered simulation model is presented in section 8.2. We end this chapter with The development of

a flight acceptance
model for the Royal
Dutch Airlines, KLM,
is presented in this
chapter.

conclusions on the validity of DSOL with respect to its usefulness, usability and
usage. Note, this chapter has been read and its content has been endorsed by the
Decision Support and Operations Control departments of KLM. The content of
this chapter reflects the paper ’Flight scheduling at KLM’ (Jacobs et al., 2005a)

8.1 Introduction

Royal Dutch Airlines, or KLM, is the Netherlands’ largest airliner and as such one KLM adapts its flight
schedule at least four
times per year to
accommodate changes
in demand.

of the largest in Europe; it was founded in 1919 and since then it has experienced
constant growth. In the fiscal year 2003/2004, KLM employed 34.529 people and
maintained a fleet of 188 aircraft (KLM, 2004). KLM executes a schedule con-
necting over 400 cities in 85 countries on 6 continents. An estimated 23.4 million
passengers and some 529,000 tons of freight were transported over its network in
2003/2004 (KLM, 2004). KLM has recently merged with Air France; the new
airline is the biggest in Europe and number three in the world.
KLM adapts its flight schedule at least four times per year to accommodate A department called

Plan Acceptance
Management assesses
the feasibility of a new
schedule supported by
a simulation model.

changes in demand. Schedules are developed by the Network department, a busi-
ness unit with a strong commercial focus, whose main interest is to maximize profit
by maximizing the number of passengers, flights and flight connections. Within
KLM, Operations Control is the business unit responsible for operating the sched-
ule. Its interest lies in executing a feasible schedule which implies less passengers
and fewer flights. A sub-department of Operations Control, called Plan Acceptance

Management, assesses the feasibility of a new schedule, and reports to Operations
Control on whether to accept it. Due to the often conflicting interests of NetworkThis simulation

model, delivered in
2003, and specified in

Arena, is called
OPiuM.

and Operations Control, objectivity and rationality in the plan acceptance process
are highly valued. To achieve such rationality, the decision support department
of KLM was requested to develop a simulation model that would support gaining
insight into the operational consequences of a new flight schedule. This simulation
model, delivered in 2003, and specified in Arena, is called OPiuM, and is used ever
since.

8.1.1 The plan acceptance process

Every quarter, Network develops a new initial plan based on commercial and
strategic insights. Two months before the start of a new schedule, the plan is
presented to Operations Control. Plan Acceptance Management then reviews the
schedule and evaluates resulting agreements with capacity service providers, e.g.
cabin crew, pilots, and the engineering divisions. The combination of a schedule
and matching agreements is called the operational plan, or OP. An example of
such an operational plan is presented in figure 8.1.
Operations Control and Network have a service level agreement that describesOperations Control

and Network have a
service level

agreement that
describes the

performance that
Operations Control

must deliver.

the performance that Operations Control must deliver. The three key performance
indicators of this agreement are the completion factor, i.e. the percentage of
flights executed, the aggregated arrival delay and the aggregated departure delay,
expressed as a percentage.
From the moment Operations Control accepts a plan, it is considered to be its
owner; specific aircrafts are now to be assigned to individual flights. Any further
adaptations to the plan have to be evaluated and approved by Front Office, which
is the virtual department managing operations on the day of execution. This
department is virtual since it results from co-operation between all involved parties
at the day of operation. The work of Front Office consists of minimizing effectsThe three key

performance
indicators of this

agreement are the
completion factor, the

aggregated arrival
delay and the

aggregated departure
delay.

of daily problems on succeeding flights. Two weeks before the beginning of the
operational plan, passenger bookings are matched with aircraft capacities.
To improve operational insight in future operational plans, Decision Support devel-
oped a simulation model, named OPiuM1. This model reflects KLM’s philosophy
of evaluating individual business units based on their performance in the exe-
cution of sub-processes. The process of an individual plane is divided into four
sub-processes, which are referred to as process building blocks and are presented
in figure 8.2. A department responsible for the execution of a sub-process is called
a capacity service provider. KLM’s management made capacity service providers
individually responsible for measuring and publishing service time distributions.

1 OPiuM is a Dutch abbreviation for Operational Performance (in uitvoering) Model.

154

Fig. 8.1: A schedule as viewed with Flash

CASE: FLIGHT SCHEDULING AT KLM 155

All flights of a schedule are simulated in OPiuM. Disturbances in OPiuM are theAll flights of a
schedule are simulated

in OPiuM.
Disturbances in

OPiuM are the result
of the difference
between a value

drawn from a
statistical distribution

and an planned
average process time.

result of the difference between a value drawn from a statistical distribution and
a planned average process time. The statistical distributions used in OPiuM are
based on the service time distributions, provided by the capacity service providers.
Whenever there is a disturbance in the simulated schedule, OPiuM optimizes the
remainder of the schedule by evaluating a number of potential measures. Such
measures include accepting the disturbance, swapping planes and canceling the
flight. Penalties, awarded to all these measures, are used to evaluate the quality
of the remainder of the schedule.

B
B
1

:
fl
yi

n
g

B
B
2

:
a
rr

iv
a
l

B
B
3

:
id

le

B
B
4

:
d
e
p
a
rt

u
re

kk

Fig. 8.2: KLM’s process building blocks

Although the current specification of OPiuM in Arena is considered to be a great
success, managers and employees must be constantly warned not to overtrust the
outcome of the model, KLM believed there was added value to be obtained from
a renewed specification of the OPiuM model in DSOL.

8.1.2 Why a renewed specification in DSOL?

The challenges noticed by KLM with respect to the usefulness, usability and usage
of their current specification of OPiuM forms the topic of this section.

• One of the most noticeable problems was that while the optimizer requiresThere were several
reasons for a renewed

specification of
OPiuM in DSOL all of
which reflect the need

for an open,
distributed simulation

suite.

operations research strategies to deliver the required output, Arena is clearly
not designed for such algorithmic specifications. As a result OPiuM is mostly
specified in Microsoft Visual Basic2 and Arena is, besides providing an event
calendar and thus the simulated time, almost circumvented as a simulation
language.

• Another problem is Arena’s model execution environment. Although OPiuM
was developed by highly experienced simulation experts, the users of OPiuM,

2 Visual Basic is a trademark of Microsoft Corporation (http://msdn.microsoft.com/
vbasic/)

156

i.e. employees of Plan Acceptance Management, are not highly educated in
this area, and while they are experts in the domain of flight scheduling, the
execution and development environment of Arena is considered to be too
complex and as such lacks usability qualities for those that must use it.

• Due to Arena being specialized software at KLM, and because of the compli-
cated structure and deployment of Arena licenses, in addition to the specific
versions of the libraries used to accomplish the interaction between Arena and
Microsoft Visual Basic, the Decision Support department developed OPiuM
and by default became responsible for its installation, maintenance and ser-
vice for end-users.

• Arena does not provide any support for the collaborative model specification,
nor does it provide support for distributed, concurrent model execution.

• Arena is difficult to integrate with external distributed data sources. Since
capacity service providers must individually publish service times, support
for integrating information would be very much appreciated.

• An overall conclusion with respect to the current specification in Arena was
that KLM foresees that usage of OPiuM may well shift to a more operational
mode, in which daily problems are evaluated, if the current specification has
not reached its limits with respect to scalability and performance.

Given the above, KLM and Delft University started to specify OPiuM in DSOL.
The value for this case for the validation of DSOL is twofold. One, the case has
also been specified in a traditional, alternative, simulation language; it offered a
possibility to compare the two. Two, the decision support department at KLM
initiated contact and proposed the case; we did not seek it out as a validation case.
We wish to emphasize the fact that KLM was not involved in the design phases of
DSOL; and we had no prior contact before the start of the case study.

8.2 Conceptualization

We will now introduce the conceptual diagrams of the case, to provide insight If a flight is delayed,
Operations Control
can take the following
measures to optimize
the remainder of the
schedule: swapping
two fleetlines,...

into the processes of executing a flight schedule. A schedule consists of fleetlines;
a sequence of flights scheduled during the schedule period to be performed by one
aircraft. If a flight is delayed, Operations Control can take several measures to
optimize the remainder of the schedule. To evaluate the consequences of a potential
measure, a value function is assigned to each measure, expressing a sanction, in
minutes delay, for a particular flight, at a particular moment in time. The following
measures are used in the model.

CASE: FLIGHT SCHEDULING AT KLM 157

time pressure

Amsterdam

kk

kk

Amsterdam

Fig. 8.3: The swap measure

• Swapping two fleetlines : one of the measures is to swap two fleetlines. This
implies that the scheduled flights for a particular plane for the remainder of
the rotation are swapped with those scheduled for an alternative plane. A
rotation is the sequence of flights from Schiphol to Schiphol. Usually this
involves two flights, or legs, but sometimes it involves three or more. The
swap measure is illustrated in figure 8.3. If a delay causes time pressure, and
thus an inevitable delay, on the next flight, swapping a rotation between two
planes may well be a rational measure to take. Swaps are only performed
at Schiphol airport and preferably between two planes of the same sub-
type. This is called a registration swap. Only if such plane is not available,
are planes of another type considered. The sanctions for this measure are
expressed in minutes and based on the differences in passenger capacity of
the aircrafts involved. There is a base sanction plus a leg-sanction for every
swapped leg, except for registration swaps, where only the base sanction
applies.

• Using a reserved flight : this is an aircraft that is kept idle for a longer period...using a reserved
flight,... of time, i.e. several hours to days. A reserved flight is used to schedule a

standby aircraft and crew, which are only used whenever a problem in the
schedule occurs. When a flight must be executed but the originally assigned
aircraft is unavailable a reserve aircraft may be used. The sanction and value
function of a reserve are equal to the swap measure.

• Reducing maintenance time: maintenance can be shortened by approxi-
mately 15% of the regular maintenance time by increasing the amount of...reducing the

maintenance time of a
plane and...

assigned resources, i.e. engineering staff and equipment. The sanction for
this measure depends on the type of airplane.

• Canceling a flight : a cancel-measure implies that an entire rotation is can-...canceling a flight.

celed, i.e. it will not be executed. The sanction is evaluated per leg and
is very high, which is not surprising since cancellation is the most radical
solution.

158

Operations Control is responsible for the execution of flights and thus for the
optimization of the schedule. A sequence diagram of this executeFlight operation
is presented in figure 8.4.
The following characteristics of this sequence diagram are worth discussing. One,
on the execution of a flight, an external optimizer is requested to optimize the
schedule. Two, this optimizer is defined as an interface. By using an interface,
we adhere to the principle of design by contract (see principle 3.4.9 on page 44)
and as such emphasize on a loosely coupled relation, i.e. we place the emphasis on
the replaceability of a particular implementation. A domain specific, proprietary,
external service can easily be used to do the actual optimization. Three, the
actual execution is implemented in the Aircraft which adheres to the principle
of separation of concerns (see principle 3.2 on page 37).
Although the use of an external, well validated optimizer is encouraged, a reference
implementation of the interface is presented in figure 8.5. The following charac- Although the use

of an external, well
validated optimizer is
encouraged, a refer-
ence implementation
of the interface is
presented in figure
8.5.

teristics of this implementation are worth discussing. One, the optimizer has no
relation with the DSOL simulator. This ensures that the algorithm used to opti-
mize a flight schedule can be shared between the simulation model, i.e. OPiuM,
and the information systems supporting daily flight execution. The potential use of
a domain specific optimizer is a direct result of the fulfillment of requirement 4.2 on
page 59. It furthermore opens the door to use OPiuM in a more operational daily
environment. Two, measures follow a transaction model, which supports an initial
try and a final perform. Three, both value functions assessing the consequences of
individual measures and the reference time providers, i.e. NormTimeProvider are
interfaces that emphasize on the replaceability of a particular implementations.
The actual execution of a flight is the responsibility of an aircraft, see the sequence
diagram of figure 8.4. The Aircraft class is presented in figure 8.6. The following
characteristics are presented in this figure. One, static parsing methods in both
the Aircraft and the SubType directly parse the Flash3 schedule presented in
figure 8.1. Two, the State class represents the states reflecting the sub-processes
of an plane. The sequence is specified in the nextState operation.
KLM’s schedule is conceptualized in figure 8.7. The Fleetline holds a number
of FlightLists each holding a number of Flights. DSOL’s event package enables
flights to fire events whenever a delay is incurred, and to compute the performance
indicators of a schedule; DSOL’s statistical objects are asynchronously subscribed
to these events.

3 Flash is the name of the KLM proprietary software used to create flight schedules.

CASE: FLIGHT SCHEDULING AT KLM 159

Default actor

this : OperationsControl fleetline : Fleetline aircraft : Aircraft optimizer : OptimizerInterface flight : Flight simulator : DEVSSimulatorInterface

executeFlight(Flight): void

getSimulatorTime(): double

optimize(Collection,double): Collection

addListener(EventListenerInterface,EventType): boolean

addListener(EventListenerInterface,EventType): boolean

getFleetline(Collection): Fleetline

getAircraft(): Aircraft

execute(Flight): void

F
ig

.
8
.4

:
S
eq

u
en

ce
d
iagram

of
th

e
e
x
e
c
u
t
e
F
l
i
g
h
t

op
eration

1
6
0

 DefaultOptimizer(valueFunction, normTimeProvider, measures)

 DefaultOptimizer(valueFunction, normTimeProvider)

 determineProblem(fleetlines, currentTime): Flight

 getNormTimeProvider(): NormTimeProviderInterface

 getValueFunction(): ValueFunction

 optimize(fleetlines, currentTime): Collection

DefaultOptimizer

 optimize(fleetlines, time): Collection

OptimizerInterface

 getNormTime(aircraft, nextFlight): double

nl.klm.cafeine.flight.normTimes.NormTimeProviderInterface

 getSanction(measure, solution): double

 getSanction(problem, fleetlines, time): double

nl.klm.cafeine.flight.optimizer.values.ValueFunction

 ~ normTimeProvider

0..1

 ~ valueFunction

0..1

Fig. 8.5: A reference implementation of the OptimizerInterface

8.3 Specification

We present the specification of the OPiuM model in DSOL in this section. The
actual values of all processes and resources can be found in van Duin (2005);
we introduce only those aspects that are relevant for understanding the extent
to which the DSOL specification of OPiuM differs from the prior OPiuM model
specification in Arena.

8.3.1 Input specification

An example of an operational plan is illustrated in figure 8.1 with the screenshot of
the KLM proprietary schedule software named Flash. DSOL supports input and
output of this file format to ensure that the usability of OPiuM and Flash for the DSOL supports input

and output of the
KLM proprietary
schedule software
named Flash (see
figure 8.1)

end-user is not affected. This validates the value of requirement 4.2 on page 59.
Although capacity service providers publish service times individually and au-
tonomously, Decision Support is currently obliged to download such information
and to export it into Microsoft Access4 files which can be read by Arena. The
DSOL specification of OPiuM supports both the Microsoft Access, and any re-
mote text-based proprietary document format. As a consequence updated infor-
mation can be automatically downloaded over ftp, http or nfs. Java’s JDBC5 and

4 Microsoft Access is a trademark of Microsoft Corporation (http://www.microsoft.com/)
5 JDBC technology is an application program interface that provides cross-database manage-

ment system connectivity to a wide range of SQL databases.

CASE: FLIGHT SCHEDULING AT KLM 161

AIRCRAFTSUBTYPES: Map

BUSINESS_CLASS: short

ECONOMY_CLASS: short

subType: String

standardTurnTime: double

 getPaxConfig(index): int

 isMemberOfFamily(familyName): boolean

 toString(): String

 parseAircraftTypes(flashFile)

Subtype

IN_MAINTENANCE: State

IN_REPAIR: State

IN_AIR: State

LOADING: State

UNLOADING: State

IDLE: State

RESERVE: State

value: short

 toString(): String

 nextState(state): State

State

 getProcessTime(aircraft): double

nl::klm::cafeine::flight::processTimes::ProcessTimeProviderInterface

unitNumber: String

 execute(flight)

 getBounds(): Bounds

 getFlight(): Flight

 toString(): String

 parseAircrafts(simulator, flashExcelFile, processTimeProvider, normTimeProvider)

 Aircraft(simulator, subtype, unitNumber, processTimeProvider, normTimeProvider)

Aircraft

 - processTimeProvider0..1

 ~ state0..1

 ~ subtype0..1

Fig. 8.6: Class diagram of Aircraft

162

 FlightList()

 get(index): Flight

 getIndex(flight): int

 nextFlight(previous): Flight

 previous(current): Flight

FlightList

Fleetline

DELAY_EVENTS: EventType

 Flight(simulator, flightNumber)

 clone(delay): Flight

 getActualTimeArrival(): double

 getActualTimeDeparture(): double

 getAircraft(): Aircraft

 getDestination(): Airport

 getEstimatedTimeArrival(): double

 getEstimatedTimeDeparture(): double

 getFleetline(fleetlines): Fleetline

 getFlightNumber(): String

 getOrigin(): Airport

 getRegion(): short

 getScheduledTimeArrival(): double

 getScheduledTimeDeparture(): double

 setActualTimeArrival(time)

 setActualTimeDeparture(time)

 setEstimatedTimeArrival(time)

 setEstimatedTimeDeparture(time)

Flight

 ~ flights0..1

«use»

Fig. 8.7: Class diagram of Fleetline

CASE: FLIGHT SCHEDULING AT KLM 163

<model>

<model-class>nl.klm.cafeine.model.Model</model-class>

<class-path>

<jar-file>http://www.simulation.tudelft.nl/airfields.jar</jar-file>

<jar-file>ftp://anonymous:klm@ftp.klm.com/pub/data.jar</jar-file>

<jar-file>file:/C:/development/cafeine/world.jar</jar-file>

</class-path>

</model>

<properties>

<property key="DATABASE_PROPERTIES" value="/database.properties"/>

</properties>

Fig. 8.8: Experimentation in the DSOL specification of OPiuM

JNDI6 standards further result in support for remote relational and directory-based
databases. This support is illustrated in the model definition of the experiment
definition presented in figure 8.8. The connection arguments for connecting to a
remote database, e.g. Microsoft Access or Oracle, are supplied in the text based
database.properties file. DSOL’s support for such wide range of potential data
sources validates the value expressed in figure 5.1 on page 64.

8.3.2 Output specification

The DSOL specification of OPiuM supports a number of output modes. Besides
charts and Microsoft Excel files, the DSOL specification of OPiuM supports an-
imation on top of a geographical information system, i.e. Gisbeans (Jacobs and
Jacobs, 2004). Several characteristics of DSOL’s animation capabilities are pre-
sented in figure 8.9.

• DSOL supports multiple, remote animation screens which are concurrently
subscribed to the simulation model. This validates the value of DSOL’s
strong support for remote asynchronous communication, which is provided
by event service presented in section 5.5 on page 70. It furthermore validatesDSOL supports

multiple, remote
animation screens

which are concurrently
subscribed to the
simulation model.

the value of a loosely coupled, pull-based approach to animation (see section
5.9 on page 95).

• The geographical information system, Gisbeans, supports layered based ren-
dering; detailed information is only shown at detailed zoom levels.

6 Java Naming and Directory Services

164

• The animation of the planes is state dependent, i.e. the actual delay is
represented under the plane.

• Clicking on a specific plane enables users to drill down and actually to get Clicking on a specific
plane enables users
to drill down and get
operational insight
into the status of
the plane, e.g. the
position and the
estimated delay.

operational insight into the status of the plane, e.g. the position and the
estimated delay (see the introspection service on page 69).

8.4 Conclusions

We will now evaluate the current specification and the extent to which we have ac-
complished the requirements presented in section 8.1.2. The first requirement was
to overcome the circumvention of the simulation language to specify the algorithms
of schedule optimization. Without further elaboration, we may well conclude that
using the Java programming language for the specification of the model fulfills this
requirement. We argue that the specification of these algorithms provides evidence
for the achievement of a conceptual modeling freedom (see section 4.7); The open
architecture of DSOL furthermore prevents a doubtful boundary between parts
that are available to designers and parts that are shielded. DSOL for example
provides full access to the event list of the discrete simulator.
A second requirement was to distinguish end-users from simulation model builders
and to target specific support environments for their tasks. In DSOL, model
builders are supported with state-of-the-art software engineering tools such as an
integrated development environment, e.g. Eclipse7, and a Java project manage-
ment tool, e.g. Maven8. End-users are supported with a web-portalled environ-
ment which is tailored for specific usage. We conclude that the separation of model
builders and model users has improved the usability of OPiuM; both are supported
in a tailored environment.
A third requirement was to deliver a suite of KLM standard information system A general over

reaching conclusion
is that, from our
perspective, the
DSOL implementation
has yet to reach
its limitations with
respect to scalability
and performance.

services that allowed KLM’s IT department to take responsibility for and control
installation and end-user support. Since KLM has standardized all in-house de-
velopments in the Java programming language, we may well conclude that our
specification fulfills this requirement.
The fourth requirement was that the decision support department should be sup-
plied with tools that could meet a need to support collaborative model speci-
fication. This case taught KLM how to use a concurrent versioning system to
synchronize changes on a central model repository. A more general conclusion for
our research is that the KLM case provided a clear justification and validation of

7 Eclipse is a trademark of the Eclipse consortium (http://www.eclipse.org)
8 http://maven.apache.org

CASE: FLIGHT SCHEDULING AT KLM 165

Fig. 8.9: Animation in the DSOL specification of OPiuM

166

the n > 1 decision makers. With this renewed specification multiple decision mak-
ers could share their opinion on specific flight schedules, and the underlying value
functions and optimization strategies can clearly be used by the actual day-to-day
operations.
Java is a general purpose programming language designed for a networked, dis-
tributed environment. The DSOL specification of OPiuM makes use of libraries
to connect to external databases, in-memory databases, directory services and re-
mote files over any network protocol, e.g. ftp or http. A diagram showing the
fulfillment of the requirement to link to external data sources is presented in figure
8.8. We conclude that DSOL improved the usage of OPiuM within KLM.
A general over reaching conclusion is that, from our perspective, the DSOL The possibilities to

not animate, and to
distribute execution
support our strong
conviction that the
DSOL specification is
well equipped to serve
more operational,
daily processes.

implementation has yet to reach its limitations with respect to scalability and
performance. The possibilities to not animate, and to distribute execution over
multiple processors, support our strong conviction that the DSOL specification is
well equipped to serve more operational, daily processes, however more research is
required to support this.

CASE: FLIGHT SCHEDULING AT KLM 167

168

9. EPILOGUE

In the last chapter of this thesis, we return to our main objective: improving the
effectiveness of decision support with a well designed simulation suite for a studio
based decision process. We observed that while traditional simulation environ-
ments are designed to support one actor, one formalism, one operating system
and one model, actors that have to make decisions in ill-structured situations re-
quire support systems designed to support concurrently multiple decision makers, In the last chapter

of this thesis we
return to our main
objective: improving
the effectiveness
of decision support
with a well designed
simulation suite.

who may be dispersed over multiple locations, and who are experimenting with
multiple models specified in multiple formalisms. We concluded that we need a
new paradigm, or world view, for the design of decision support systems which we
named the Nn-Nm-No paradigm.
We based our research on the assumption that the effectiveness of decision support
is improved in a studio-based approach. We hypothesized that we could design a
simulation suite based on an Nn-Nm-No paradigm and that this suite would provide
more effective decision support.
A review of the research questions is presented in section 9.1. Conclusions regard-
ing the success of embedding DSOL in the simulation community are discussed in
section 9.2. We have argued throughout this thesis that the domain of simulation
should be grounded on the Nn-Nm-No paradigm. In the last section of this thesis
we discuss the consequences of this paradigm and present recommendations for
further research.

9.1 A review of research questions

We review the set of revised research questions, presented in chapter 2, in this
section.

Research question 1 Can we create a simulation suite which takes full advan-
tage of the distributed, service oriented computing paradigm?

We presented the object-oriented system description as the basis for a service-
oriented design in chapter 3. We defined a service as ’the specification of an
object-oriented (sub)system that offers a cohesive set of functionality via one or
more interfaces’ (see page 63). Several principles (3.4.2, 3.4.3 and 3.4.9 on page 44)

present the value of designing by contract to achieve a service based information
system, i.e. a suite. To address the extent to which such service oriented design is
accomplished, i.e. our first research question is answered, we present the following
evidence:

• The choice for the Java programming language, that was presented in sec-Usefulness of the
decision making

process is improved
through the current

availability of several
formalisms and well

documented interfaces
for domain specific

libraries.

tion 5.2, was made on the basis of its strong bias for distributed, service
oriented characteristics. Java supports interface based design, provides dis-
tributed deployment of services and web-based communication.

• In section 5.3 we stated that the main reason not to base the development
of DSOL on already existing Java based simulation environments was that
these environments lack a service oriented paradigm, e.g. objects are not
serializable or no interfaces are defined.

• DSOL is presented as a set of services in figure 5.2 on page 67. These
services are designed for a specific functionality in the context of simulation.
Considerable attention is given to the dependencies between them to ensure
the modularity of the suite (see table 5.1 on page 70).

• Strong evidence for the interface based design of DSOL is presented in the
class diagram of figure 5.6 on page 75; the absence of classes in this figure em-
phasizes the decoupled, open and service oriented, i.e. interfaces, philosophy
underlying DSOL.

Based on this evidence we conclude that we may answer the first research questionUsability is improved
and supported by the
distributed web-based
access, the separation

of the modeling
environment and
experimentation

environment and the
introduction of
state-of-the-art

software engineering
tools.

positively and that we indeed succeeded in developing a suite of open, interacting
services. We have furthermore found strong evidence, in both validating case
studies, for the value of service based design with respect to the effectiveness of a
decision support system.
We showed in chapter 7 how a realtime clock implementation of DSOL’s Simulator-
Interface enabled the use of DSOL in the time-constaint and performance-defiant
domain of emulation. We furthermore showed how the suite was linked to other
external services (see section 7.3.1). We conclude that it was possible to use DSOL
in this specific domain because the DSOL suite could be tailored, that is: specific
performance tuned services were deployed in the DSOL suite.
We showed the value of service based model conceptualization and specification
in the KLM case study. We were able to specify the optimization algorithms as a
service to be used by the simulation model; this loosely coupled relation provided
us with the ability to share the optimization service between the OPiuM model
and KLM’s operational information systems.

170

Research question 2 Can we create a simulation suite which supports concep-
tual modeling freedom using discrete and continuous simulation models?

To address this research question we recall the formalism transformation graph
(figure 4.5 on page 52) and the class diagram presenting the hierarchy of simula-
tors (figure 5.6 on page 75). Since we have specified a simulator for the combined
continuous and discrete formalism, i.e. the DEVDESS formalism, we conclude that
we may answer this research question positively: all other formalisms can be em-
bedded into this formalism.
We have shown that models may use specific formalisms which are embedded
in either the continuous DESS, the discrete DEVS or the combined DEVDESS
formalism. An example of such formalism is the process interaction formalism
presented in section 5.6.2. The ability to specify such formalism is a results from
decoupling the formalism used in the model, e.g. process interaction, and the
formalism of the simulator, e.g. discrete event formalism. This ensures that all
other formalisms presented in the formalism transformation graph that are not
already implemented in DSOL, can be implemented in DSOL.
The value of providing conceptual modeling freedom based on the support of dis-
crete and continuous simulation models for the effectiveness of a decision support
system is presented in a number of case studies. In the KLM case study we
showed that the optimization algorithms could be directly implemented in DSOL:
circumvention of the simulation environment was no longer needed. We conclude
that this is a consequence of, and shows the value of supporting modeling free-
dom. The flexible assembly case (section 6.1.2) and the emulation case (chapter
7) furthermore show how the models were conceptualized and specified in multiple
formalism. A more general example is that every example presented in section
6.1 is specified in its own formalism; thus we have clearly shown the value of this
conceptual modeling freedom for the domain of simulation.

Research question 3 Can we create a simulation suite based on a loosely cou-
pled structure between a model and its environment, e.g. animation, statistics,
optimization components?

To answer this question we refer to the presentation of DSOL’s animation frame-
work given in chapter 5. DSOL supports multiple, distributed animation screens
which are asynchronously subscribed to one simulation model. Examples are pro-
vided for two-dimensional and three-dimensional modeling in section 5.9 on page
95. The intentional absence of a hard coded relation between a simulation object
and its visualization components provides flexibility and out-of-the-box animation.
This loosely coupled structure is provided by the event service (section 5.5); nearly
all the other services depend on this service (see table 5.1 on page 70).

EPILOGUE 171

Further scientific evidence supporting the claim that this loosely coupled structure
has been accomplished is presented in the two validating case studies.

• We were able to specify the optimization algorithms in the KLM case study
as a service to be used by the simulation model; hence there was strong
decoupling.

• We were able to link the KLM model to different external data sources, e.g.
databases, propriatery KLM software, etc.

• We showed that animation panels could be distributed in both the KLM case
study and in the explorative US Air Force case study.

• We were able to decouple the animation thread from the communication
thread in the Dycore case study . This loosely coupled structured helped us
to reach the required maximum time period of 30 · 10−3 seconds (see section
chapter7:section:specification:performance).

We thus conclude that we have provided scientific evidence to answer this research
question positively; the event service presented in section 5.5 forms the basis for
distributed, asynchronous communication which turned out to be the key factor
for achieving this research objective.

Research question 4 Can we provide scientific evidence that such simulation
suite provides more effective decision support than simulation environments that
are based on a 1 − 1 − 1 paradigm?

Based on our findings we can conclude that the usefulness of the decision making
process is improved through the current availability of several formalisms and well
documented interfaces for domain specific libraries. Usability is improved and
supported by the distributed web-based access, the separation of the modeling
environment and experimentation environment and the introduction of state-of-
the-art software engineering tools. Usage is improved and supported by theUsage is improved

and supported by the
intentional absence of

proprietary licenses,
the absence of

concealed parts in the
architecture and a

strong focus on the
support of multiple

actors.

intentional absence of proprietary licenses, the absence of concealed parts in the
architecture and a strong focus on the support of multiple actors. The above
supports our strong conviction that the use of DSOL improves the effectiveness of
decision making. We conclude that the suite is directly targeted at a synthetic,
interdisciplinary process of problem solving.

9.2 The DSOL user community

An underlying message in this thesis has been: developing software during a Ph.D.
research study imposes great risks. What will happen to DSOL tomorrow? Who

172

will be interested in the proprietary code developed at our university? How does
one asses the quality of a one-man-made product? Considerable attention has been
given to embedding DSOL in the simulation community in an attempt to mitigate
these risks.
At the time of writing this thesis, the DSOL website receives 3000 visitors monthly,
50 people are subscribed to the development mailing list and the latest version
has been downloaded over a 100 times. We are further pleased to state that
DSOL is serving as a basis for the ongoing Ph.D. research of several colleagues
in the fields of distributed gaming, main port area planning, i.e. area planning
in ports and airfields, the design of real time infrastructure control strategies,
e.g. train and tram infrastructure, the analysis of container terminal performance,
the exploration of supply chain policies and the orchestration of distributed web
services. The success of the two validating cases has rooted the use of DSOL in
the cultures of TBA and KLM. Despite this we have one concern: to date, the
active community developing the core services of DSOL is still relatively small
(≈ 5 developers).

9.3 Recommendations for further research

In this last section of the thesis we reflect on the consequences of our Nn-Nm-
No paradigm for the domain of systems engineering and we introduce our, partly
subjective, recommendations for further research. If we consider the research con-
ducted at our school on a more general level, two major products can be distin-
guished. Some researchers design an approach which specifies an actual process
of problem solving in a particular domain. Other researchers develop (software)
systems with which they aim to support an existing approach. Simulation as a
method of inquiry was considered to be the foregone approach to be supported
in this thesis. We nevertheless concluded that the Nn-Nm-No paradigm requires
adjustments to be made to this approach; the sequential structure of the simu-
lation modeling cycle presented by Banks (1998) flattens out the capriciousness
of the decision making process. We therefore argue that further research should
be focused in both directions, i.e. towards providing new approaches and towards
designing new systems to support these approaches. A first recommendation for
further research would therefore deal with the question:

Can we improve simulation as an approach for problem solving by
grounding it on a multi-actor, multi-location and multi-formalism, i.e.
on our Nn-Nm-No, paradigm?

To rephrase the above question, we state that further research should be conducted
on the studio-based decision making processes. From a perspective of improving

EPILOGUE 173

the DSOL suite to support such an approach we extend an explicit invitation to the
simulation community to use DSOL as a platform for multi-formalism modeling
and as such substantially to enrich the number of supported formalisms in DSOL.
Further research in this direction would deal with the question:

Can we enrich DSOL with a number of graphical user interface ser-
vices for the collaborative, distributed conceptualization of specific for-
malisms?

The TBA case study (chapter 7) and the KLM case study (chapter 8) have shownWe argue that further
research should be

focused towards
providing new

approaches and
towards designing new

systems to support
these approaches.

the strength of an open, scalable set of simulation services. From a technical
perspective it is now a small step to feed these services with organizational, e.g.
transactional, data to explore operational business processes. From a decision
support perspective, validation forms a serious challenge. If data from several
sources and from different locations is used, new challenges concerning validation
will lead to the following research question:

Can we improve the simulation approach in such a direction that the
boundaries of validation are more explicit throughout the activities of
experimentation and decision making?

From a perspective of infrastructure simulation, we recommend designing libraries
based on the concepts used in the domain of computer gaming. Modern games
feature sophisticated animation based on trackless infrastructure algorithms, e.g.
binary space partition trees. This would lead to the following research question:

Can we design a library for infrastructure modeling that is based on
the state-of-the-art concepts used in the domain of computer gaming?

Finally we recommend that further research is done to extend DSOL’s experimen-
tation framework to include goal functions and as such to link DSOL to externalWe finish this thesis

with the more general
conclusion that a

service based
approach to software

engineering has
enabled us to design

and specify a full
featured simulation

suite, that...

optimization services. XML-based model input and output may serve for this
purpose. This would lead to the following research question:

Can we improve DSOL to accomplish interaction with state of the art
optimization suites?

We finish this thesis with the more general conclusion that a service based ap-
proach to software engineering has enabled us to design and specify a full featured
simulation suite, i.e. the DSOL suite. We strongly believe that DSOL, due to
its open source license, its current user community and its well documented and...will survive and go

on to ’outlive’ this
particular Ph.D. thesis

trajectory.

open project management, will survive and go on to ’outlive’ this particular Ph.D.
thesis trajectory.

174

APPENDIX

A Time advancing functions of simulators

200

201 /**

202 * the specification of the time advancing function of the discrete

203 * event simulator.

204 *

205 * @see nl.tudelft.simulation.dsol.simulators.Simulator#run()

206 */

207 public void run()

208 {
209 while (super.isRunning())

210 {
211 synchronized (super.semaphore)

212 {
213 SimEventInterface event = this.eventList.removeFirst();

214 super.simulatorTime = event.getAbsoluteExecutionTime();

215 super.fireEvent(SimulatorInterface.TIME_CHANGED_EVENT,

216 super.simulatorTime, super.simulatorTime);

217 try

218 {
219 event.execute();

220 } catch (Exception exception)

221 {
222 Logger.severe(this, "run", exception);

223 }
224 }
225 }
226 }

Fig. A.1: Time advancing function of DEVSSimulator

Appendix 177

60 /**

61 * @see nl.tudelft.simulation.dsol.simulators.Simulator#run()

62 */

63 public void run()

64 {
65 while (this.simulatorTime <= this.replication.getRunControl()

66 .getRunLength()

67 && isRunning())

68 {
69 synchronized (super.semaphore)

70 {
71 this.simulatorTime = this.simulatorTime + this.timeStep;

72 if (this.simulatorTime > this.replication.getRunControl()

73 .getRunLength())

74 {
75 this.simulatorTime = this.replication.getRunControl()

76 .getRunLength();

77 this.stop();

78 }
79 this.fireEvent(SimulatorInterface.TIME_CHANGED_EVENT,

80 this.simulatorTime, this.simulatorTime);

81 }
82 }
83 }

Fig. A.2: Time advancing function of DESSSimulator

178

Default actor

this : DEVDESSSimulator event : SimEventInterface eventList : EventListInterface : Logger

run(): void

while (this.isRunning())

fireEvent(EventType,double,double): double

while (! this.eventList.isEmpty())

removeFirst(): SimEventInterface

getAbsoluteExecutionTime(): double

fireEvent(EventType,double,double): double

execute(): void

severe(Object,String,Throwable): void

if (this.running)

F
ig

.
A

.3
:

T
im

e
ad

van
cin

g
fu

n
ction

of
D
E
V
D
E
S
S
i
m
u
l
a
t
o
r

A
p
p
e
n
d
ix
1
7
9

Default actor

this : Animator eventList : EventListInterface : Logger event : SimEventInterface : Thread

run(): void

while (this.isRunning())

if (this.animationDelay > 0)

sleep(long): void

while (! this.eventList.isEmpty())

removeFirst(): SimEventInterface

getAbsoluteExecutionTime(): double

fireEvent(EventType,double,double): double

execute(): void

severe(Object,String,Throwable): void

fireEvent(EventType,double,double): double

fireEvent(EventType,double): double

F
ig

.
A

.4
:

T
im

e
ad

van
cin

g
fu

n
ction

of
A
n
i
m
a
t
o
r

1
8
0

B The specification of the port example

10 package nl.tudelft.simulation.dsol.tutorial.section45;

11

12 import nl.tudelft.simulation.dsol.formalisms.Resource;

13 import nl.tudelft.simulation.dsol.simulators.DEVSSimulatorInterface;

14

28 public class Port

29 {
34 private Resource jetties = null;

35

40 private Resource tugs = null;

41

47 public Port(final DEVSSimulatorInterface simulator)

48 {
49 super();

50 this.jetties = new Resource(simulator, "Jetties", 2.0);

51 this.tugs = new Resource(simulator, "Tugs", 3.0);

52 }
53

58 public Resource getJetties()

59 {
60 return this.jetties;

61 }
62

67 public Resource getTugs()

68 {
69 return this.tugs;

70 }
71 }

10 package nl.tudelft.simulation.dsol.tutorial.section45;

11

12 import java.rmi.RemoteException;

13 import java.util.logging.Level;

14

15 import nl.tudelft.simulation.dsol.ModelInterface;

16 import nl.tudelft.simulation.dsol.SimRuntimeException;

17 import nl.tudelft.simulation.dsol.experiment.Experiment;

18 import nl.tudelft.simulation.dsol.formalisms.devs.SimEvent;

19 import nl.tudelft.simulation.dsol.simulators.DEVSSimulator;

Appendix 181

20 import nl.tudelft.simulation.dsol.simulators.DEVSSimulatorInterface;

21 import nl.tudelft.simulation.dsol.simulators.SimulatorInterface;

22 import nl.tudelft.simulation.language.io.URLResource;

23 import nl.tudelft.simulation.logger.Logger;

24 import nl.tudelft.simulation.xml.dsol.ExperimentParser;

38 public class BoatModel implements ModelInterface

39 {
44 public BoatModel()

45 {
46 super();

47 }
48

53 public void constructModel(final SimulatorInterface simulator)

54 throws SimRuntimeException, RemoteException

55 {
56 DEVSSimulatorInterface devsSimulator = (DEVSSimulator) simulator;

57 Port port = new Port(devsSimulator);

58

59 // We schedule boat creation

60 this.scheduleBoatArrival(0, devsSimulator, port);

61 this.scheduleBoatArrival(1, devsSimulator, port);

62 this.scheduleBoatArrival(15, devsSimulator, port);

63 }
64

74 private void scheduleBoatArrival(final double time,

75 final DEVSSimulatorInterface simulator, final Port port)

76 throws RemoteException, SimRuntimeException

77 {
78 simulator.scheduleEvent(new SimEvent(time, this, Boat.class, "<init>",

79 new Object[]{simulator, port}));
80 }
81

87 public static void main(final String[] args)

88 {
89 try

90 {
91 Logger.setLogLevel(Level.WARNING);

92 Experiment experiment = ExperimentParser

93 .parseExperiment(URLResource.getResource("/section45.xml"));

94 experiment.setSimulator(new DEVSSimulator());

182

95 experiment.start();

96 } catch (Exception exception)

97 {
98 exception.printStackTrace();

99 }
100 }
101 }

Appendix 183

C Java Naming and Directory Interface

FileContext

RemoteContextClient

 bind(name, obj)

 close()

 createSubcontext(name): Context

 destroySubcontext(name)

 lookup(name): Object

 rebind(name, obj)

 rename(oldName, newName)

 unbind(name)

«interface, interface, interface»

javax.naming.Context

«interface, interface»

javax.naming.event.EventDirContext

com.sun.jndi.ldap.LdapCtx

JVMContext

OBJECT_SCOPE: int

ONELEVEL_SCOPE: int

SUBTREE_SCOPE: int

 addNamingListener(target, scope, l)

 removeNamingListener(l)

 targetMustExist(): boolean

«interface, interface, interface»

javax.naming.event.EventContext

Fig. A.5: The Context interface

184

D DSOL experiment file

<?xml version="1.0" encoding="UTF-8"?>

<dsol:experimentalFrame xmlns:dsol="http://www.simulation.tudelft.nl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<experiment>

<model>

<model-class>nl.tudelft.simulation.dsol.tutorial.section42.Model</model-class>

<class-path>

<jar-file>/tmp/tutorial.jar</jar-file>

</class-path>

</model>

<simulator-class>nl.tudelft.simulation.dsol.simulators.

DEVSSimulator</simulator-class>

<treatment>

<startTime>2003-12-01T14:30:00</startTime>

<timeUnit>WEEK</timeUnit>

<warmupPeriod unit="WEEK">0</warmupPeriod>

<runLength unit="WEEK">120</runLength>

<properties>

<!-- The cost properties -->

<property key="retailer.costs.backlog" value="1"/>

<property key="retailer.costs.holding" value="1"/>

<property key="retailer.costs.marginal" value="3"/>

<property key="retailer.costs.setup" value="30"/>

<!-- The ordering policy properties -->

<property key="policy.lowerBound" value="8"/>

<property key="policy.upperBound" value="80"/>

</properties>

<replication description="replication 0">

<stream name="default" seed="555"/>

</replication>

<replication description="replication 1">

<stream name="default" seed="100"/>

</replication>

</treatment>

</experiment>

</dsol:experimentalFrame>

Appendix 185

E JUnit test of DSOL’s discrete event list

1 /*

10 package nl.tudelft.simulation.dsol.eventList;

11

12 import junit.framework.Assert;

13 import junit.framework.TestCase;

14 import nl.tudelft.simulation.dsol.eventlists.EventListInterface;

15 import nl.tudelft.simulation.dsol.formalisms.devs.SimEvent;

16 import nl.tudelft.simulation.dsol.formalisms.devs.SimEventInterface;

17

33 public class EventListTest extends TestCase

34 {
36 public static final String TEST_METHOD_NAME = "test";

37

39 private EventListInterface eventList = null;

40

46 public EventListTest(final EventListInterface eventList)

47 {
48 this(EventListTest.TEST_METHOD_NAME, eventList);

49 }
50

57 public EventListTest(final String method, final EventListInterface eventList)

58 {
59 super(method);

60 this.eventList = eventList;

61 }
62

66 public void test()

67 {
68 Assert.assertNotNull(this.eventList);

69 try

70 {
71 // We fill the eventList with 500 events with random times

72 // between [0..200]

73 for (int i = 0; i < 500; i++)

74 {
75 this.eventList.add(new SimEvent(200 * Math.random(), this,

76 new String(), "trim", null));

77 }

186

78

79 // Now we assert some getters on the eventList

80 Assert.assertTrue(!this.eventList.isEmpty());

81 Assert.assertTrue(this.eventList.size() == 500);

82

83 // Let’s see if the eventList was properly ordered

84 double time = 0;

85 for (int i = 0; i < 500; i++)

86 {
87 SimEventInterface simEvent = this.eventList.first();

88 this.eventList.remove(this.eventList.first());

89 double executionTime = simEvent.getAbsoluteExecutionTime();

90 Assert.assertTrue(executionTime >= 0.0);

91 Assert.assertTrue(executionTime <= 200.0);

92 Assert.assertTrue(executionTime >= time);

93 time = executionTime;

94 }
95

96 // Now we fill the eventList with a number of events with

97 // different priorities on time=0.0

98 for (int i = 1; i < 10; i++)

99 {
100 this.eventList.add(new SimEvent(0.0, (short) i, this,

101 new String(), "trim", null));

102 }
103 short priority = SimEventInterface.MAX_PRIORITY;

104

105 // Let’s empty the eventList and check the priorities

106 while (!this.eventList.isEmpty())

107 {
108 SimEventInterface simEvent = this.eventList.first();

109 this.eventList.remove(this.eventList.first());

110 double executionTime = simEvent.getAbsoluteExecutionTime();

111 short eventPriority = simEvent.getPriority();

112

113 Assert.assertTrue(executionTime == 0.0);

114 Assert

115 .assertTrue(eventPriority <= SimEventInterface.MAX_PRIORITY);

116 Assert

117 .assertTrue(eventPriority >= SimEventInterface.MIN_PRIORITY);

Appendix 187

118 Assert.assertTrue(eventPriority <= priority);

119 priority = eventPriority;

120 }
121

122 // Let’s check the empty eventList

123 Assert.assertTrue(this.eventList.isEmpty());

124 Assert.assertNull(this.eventList.first());

125 Assert.assertFalse(this.eventList.remove(null));

126 Assert.assertFalse(this.eventList.remove(new SimEvent(200 * Math

127 .random(), this, new String(), "trim", null)));

128 this.eventList.clear();

129

130 // Let’s cancel an event

131 this.eventList.add(new SimEvent(100, this, this, "toString", null));

132 SimEventInterface simEvent = new SimEvent(100, this, this,

133 "toString", null);

134 this.eventList.add(simEvent);

135 Assert.assertTrue(this.eventList.remove(simEvent));

136 } catch (Exception exception)

137 {
138 exception.printStackTrace();

139 Assert.fail(exception.getMessage());

140 }
141 }
142 }

188

BIBLIOGRAPHY

Aboulafia, A. (1991). Philosophy, Social Theory, and the Thought of George Her-
bert Mead. State University of New York Press, New York: NY, USA.

Acton, G. (2004). Great ideas in personality: metatheory. Retreived October 21,
2004 from http://www.personalityresearch.org/.

Aigner, M. and Ziegler, G. (1998). Proofs from the book. Springer Verlag, Berlin,
Germany, 2nd edition.

Arnold, K., Gosling, J., and Holmes, D. (2000). The Java(TM) programming
language. Addison-Wesley, Boston: MA, USA, 3rd edition.

Ashby, W. (1956). An introduction to cybernetics. John Wiley & Sons, New York:
NY, USA.

Balci, O. (1988). The implementation of four conceptual frameworks for simulation
modeling in high-level languages. In Abrams, M., Haigh, P., and Comfort, J.,
editors, Proceedings of the 20th conference on Winter simulation, pages 287–295,
San Diego: CA, USA. IEEE, ACM Press.

Balci, O. (1995). Principles and techniques of simulation validation, verification,
and testing. In Lilegdon, W., Goldsman, D., Alexopoulos, C., and Kang, K.,
editors, Proceedings of the 27th conference on Winter simulation, pages 147–154.
IEEE, ACM Press.

Banks, J. (1998). Principles of simulation. In Banks, J., editor, Handbook of Sim-
ulation: Principles, Methodology, Advances, Applications, and Practice, pages
3–31. Wiley-Interscience, New York: NY, USA.

Barr, J. (2003). Business intelligence 2003: Are your bi systems making you
smarter? Retreived October 21, 2004 from http://www.cioinsight.com/

print_article/0,1406,a=42221,00.asp.

Birtwistle, G. M. (1979). Discrete Event Modelling on Simula. Macmillan Press,
Houndmills, UK.

Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The unified modeling language
user guide. Addison-Wesley, Indianapolis: IN, USA.

Bosman, A. (1977). Een metatheorie over het gedrag van organisaties. Stenfert
Kroese, Leiden, the Netherlands. (in Dutch).

Boyson, S., Corsi, T., and Verbraeck, A. (2003). The e-supply chain portal: a core
business model. Transportation Research Part E, 39:175–192.

Breitenecker, F. (1990–2004). Simulation news europe: comparisons. Retreived
October 21, 2004 from http://www.argesim.org/comparisons/index.html.

Briggs, R., de Vreede, G.-J., and Nunamaker, J. (2003). Collaboration engineering
with thinklets to pursue sustained success with group support systems. Journal
of Management Information Systems, 19:31 – 64.

Brussaard, B. and Tas, P. (1980). Information and organization policies in public
administration. In Lavington, S., editor, Proceedings of IFIP Congress 80, pages
821–826, Tokyo, Japan. International Federation for Information Processing,
North-Holland.

Burn, O. (2001-2003). Checkstyle overview. Retreived October 21, 2004 from
http://checkstyle.sourceforge.net/.

Buxton, J. and Laski, J. (1962). Control and simulation language. The computer
journal, 5:194–199.

Cai, W., Lee, F., and Chen, L. (1999). An auto-adaptive dead reckoning algorithm
for distributed interactive simulation. In Proceedings of the thirteenth workshop
on Parallel and distributed simulation, pages 82–89. IEEE Computer Society.

Cardelli, L. and Wegner, P. (1985). On understanding types, data abstraction and
polymorphism. Computing surveys, 17(4):471–522.

Churchman, C. (1971). The design of Inquiring Systems: Basic Concepts of Sys-
tems and Organizations. Basic Books, New York: NY, USA.

Corré, A. (1992). Lecture on the lingua franca. Contacts between Cultures: West
Asia and North Africa, 1(1):140–145.

Cournot, A. (1838). Recherches sur les principes mathatiques de la thrie des
richesses. Hachette, Paris, France.

Dahl, O.-J. (2002). The birth of object orientation: the simula languages. In Broy,
M. and Denert, E., editors, Software Pioneers, pages 78–91. Springer, Berlin,
Germany.

190

Daum, B. and Horak, C. (1999). The XML shockwave. Software AG, Darmstadt,
Germany.

Delone, W. and McLean, E. (1992). Information system success: the quest for the
dependent variable. Information Systems Research, 3(1):60–95.

Delone, W. and McLean, E. (2003). The delone and mclean model of informa-
tion systems success: A ten-year update. Journal of Management Information
Systems, 19(4):9–30.

Deng, L. and Xu, H. (2003). A system of high-dimensional, efficient, long-cycle and
portable uniform random number generators. ACM Transactions on modeling
and computer simulation, 13(4):299–309.

Denning, P. (1997). A new social contract for research. Communications of the
ACM, 40(2):132–134.

Dick, B. (1999). What is action research. Retreived October 21, 2004 from http:

//www.scu.edu.au/schools/gcm/ar/whatisar.html.

Dycore (2004). Dycore - productinfo bekistingsplaatvloer, kanaalplaatvloer en
ribbenvloer. Retreived October 21, 2004 from http://www.dycore.nl/. (in
Dutch).

Eccleston, J. (2002). The net-centric supply chain. Retreived October 22, 2004
from http://www.afei.org/brochure/2AF2/james_eccleston.pdf.

Eckel, B. (2000). Thinking in C++. Prentice-Hall, New York: NY, USA, 2nd
edition.

Eckel, B. (2004a). < T extends NonGenericType> and Class < T >. Retreived
February 28, 2005 from http://www.mindview.net/WebLog/log-0062.

Eckel, B. (2004b). Why java needs latent typing. Retreived February 28, 2005
from http://www.mindview.net/WebLog/log-0063.

Eisenhardt, K. (1989). Building theories from case study research. Academy of
management review, 14(4):532–550.

Faires, J., Burden, R., Faires, D., Pirtle, B., and Sandberg, K. (2002). Numerical
Methods. Brooks Cole, Boston: MA, USA, 3rd edition.

Fischman, G. (1973). Concepts and methods in discrete event digital simulation.
John Wiley & Sons, New York: NY, USA.

BIBLIOGRAPHY 191

Frog (2004). Park-a-car. Retreived October 22, 2004 from http://www.frog.nl/

cargo.php?f=parkacar\&s=capplications.

Fujimoto, R. (2000). Parallel and distributed simulation systems. John Wiley &
Sons, Cambridge: MA, USA.

Galliers, R. (1992). Choosing information systems research approaches. In Gail-
liers, R., editor, Information systems research: issues, methods, and practical
guidelines, pages 144–162. Blackwell Scientific Publications, Oxford, UK.

Gove, P., editor (2002). Webster’s third new international dictionary, unabridged.
Merriam-Webster, 3rd edition.

Healy, K. and Kilgore, R. (1997). Silk: a Java-based process simulation language.
In Proceedings of the 29th conference on Winter simulation, pages 475–482,
Atlanta: GA, USA. ACM Press.

Hevner, A., March, S., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS Quarterly, 28(1).

Hintikka, J. (1975). Rudolf carnap, logical empiricist. In Materials and Perspec-
tives. D. Reidel Publishing Company, Dordrecht, the Netherlands.

Hlupic, V. (1993). Simulation modeling software approaches to manufacturing
problems. PhD thesis, London School of Economics, London, UK.

Hoare, C. A. R. (1968). Record handling. In Genuys, F., editor, Programming
Languages: NATO Advanced Study Institute, pages 291–347. Academic Press,
London, UK.

Holbaek-Hansen, E. (1975). System description and the Delta language. NCC,
Oslo, Norway.

Hoschek, W. (2002). The colt distribution. Retreived October 21, 2004 from
http://hoschek.home.cern.ch/hoschek/colt/.

Jacobs, J. and Jacobs, P. (2004). Gisbeans: a Java library for geographical
information systems. Retreived October 21, 2004 from http://gisbeans.

sourceforge.net.

Jacobs, P. (2004). Specifying the sne comparisons in dsol. Retreived October 25,
2004 from http://www.simulation.tudelft.nl/dsol/sne.

192

Jacobs, P., Lang, N., and Verbraeck, A. (2002). A distributed Java based discrete
event simulation architecture. In Yucesan, E., Chen, C.-H., Snowdon, J., and
Charnes, J., editors, Proceedings of the 2002 Winter Simulation Conference,
pages 793–800, San Diego: CA, USA. IEEE, ACM Press. Retreived October 21,
2004 from http://www.informs-cs.org/wsc02papers/102.pdf.

Jacobs, P. and Verbraeck, A. (2004a). Mastering DSOL: a Java based suite for
simulation. Delft University of Technology, Delft, the Netherlands, 2nd edition.
Retreived October 21, 2004 from http://www.simulation.tudelft.nl/dsol.

Jacobs, P. and Verbraeck, A. (2004b). Single-threaded specification of process-
interaction formalism in Java. In Ingalls, R. G., Rossetti, M. D., Smith, J. S., and
Peters, B. A., editors, Proceedings of the 2004 Winter Simulation Conference,
Washington: DC, USA. IEEE, ACP Press.

Jacobs, P., Verbraeck, A., and Mulder, J. (2005a). Flight scheduling at klm.
In Kuhl, M. E., Steiger, N. M., Armstrong, F. B., and Joines, J. A., editors,
Proceedings of the 2005 Winter Simulation Conference, Orlando: FL, USA.
IEEE, ACM Press.

Jacobs, P., Verbraeck, A., and Rengelink, W. (2005b). Emulation with dsol. In
Kuhl, M. E., Steiger, N. M., Armstrong, F. B., and Joines, J. A., editors, Pro-
ceedings of the 2005 Winter Simulation Conference, Orlando: FL, USA. IEEE,
ACM Press.

James, W. (1890). Principles of Psychology, volume 1–2. unknown. Retreived
October 21, 2004 from http://psychclassics.yorku.ca/James/Principles/

index.htm.

Joy, B., Steele, G., Gosling, J., and Bracha, G. (2000). Java(TM) language speci-
fication. Addison-Wesley, Boston: MA, USA, second edition.

Kaufmann, R. and Janzen, D. (2003). Implications of test-driven development: a
pilot study. In Crocker, R. and G. L. Steele, J., editors, Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 298–299, Anaheim: CA, USA. ACM, ACM
Press.

Kazi, I. H., Jose, D. P., Ben-Hamida, B., Hescott, C. J., Kwok, C., Konstan, J. A.,
Lilja, D. J., and Yew, P.-C. (2000). Javiz: A client/server Java profiling tool.
IBM Systems Journal, 39(1).

Keen, P. and Sol, H. (2005). Rehearsing the future. draft version.

BIBLIOGRAPHY 193

Kiviat, P. (1967). Digital computer simulation: modeling concepts. In RAND
Memo RM-5378- PR, Santa Monica: CA, USA. RAND Corporation.

Klir, G. (1985). Architecture of systems problem solving. Plenum Press, New York:
NY, USA.

KLM (2004). KLM, annual report 2003/2004. Retreived October 21, 2004 from
http://www.klm.com/corporate_en.

Knuth, D. (1998). The art of computer programming, volume 2. Addison-Wesley,
Boston: MA, USA, 3rd edition.

Koningsveld, H. (1987). Het verschijnsel wetenschap. Boom, Amsterdam, the
Netherlands, 8th edition. (in Dutch).

Kuljis, J. and Paul, R. J. (2000). A review of web based simulation: whither we
wander? In Proceedings of the 32nd conference on Winter simulation, pages
1872–1881, Orlando: FL, USA. SCS.

Law, A. and Kelton, W. (2000). Simulation modeling and analysis. Mc Graw Hill,
Singapore, Singapore, third edition.

L’Ecuyer, P. (1997). Uniform random number generators: a review. In An-
dradóttir, S., Healy, K., Withers, D. H., and Nelson, B., editors, Proceedings of
the 29th conference on Winter simulation, pages 127–134, Atlanta: GA, USA.
ACM Press.

L’Ecuyer, P., Blouin, F., and Couture, R. (1993). A search for good multiple recur-
sive random number generators. ACM Transactions on modeling and computer
simulation, 3(2):87–98.

L’Ecuyer, P., Meliani, L., and Vaucher, J. (2002). Ssj: A frameowk for stochastic
simulation in Java. In Yucesan, E., Chen, C.-H., Snowdon, J., and Charnes,
J., editors, Proceedings of the 2002 Winter Simulation Conference, San Diego:
CA, USA. IEEE, ACM Press. Retreived October 24, 2004 from http://www.

informs-cs.org/wsc02papers/030.pdf.

L’Ecuyer, P. and Simard, R. (1999). Beware of linear congruential generators with
multipliers of the form a = ±2q ± 2r. ACM Transactions on Mathematical
Software, 25(3):367–374.

Lee, A. (2000). Systems thinking, design science, and paradigms: Heeding three
lessons from the past to resolve three dilemmas in the present to direct a trajec-
tory for future research in the information systems field. In Proceedings of the

194

11th International Conference on Information Management. IEEE Computer
Society.

Lee, R. and Tepfenhart, W. (2002). Practical object-oriented development with
UML and Java. Prentice-Hall, Upper Saddle River: HJ, USA.

Lehmer, D. (1951). Mathematical methods in large-scale computing units. In Pro-
ceedings of the Second Symposium on Large Scale Digital Computing Machinery,
pages 141–146, London, UK. Harvard University Press.

Lieberman, H., Ungar, D., and Stein, L. (1988). The treaty of orlando: a shared
view of sharing. In Kim, W. and Lochovsky, F., editors, Object-Oriented Con-
cepts, Applications and Databases. Addison-Wesley, Boston: MA, USA.

Lindholm, T. and Yellin, F. (1999). The Java(TM) virtual machine specification.
Addison-Wesley, London, UK, 2nd edition.

Link, J. and Frolich, P. (2003). Unit testing in Java. Morgan Kaufmann, San
Francisco: CA, USA.

Mandojana, J., Herman, K., and Zulinski, R. (1990). A discrete/continuous time-
domain analysis of a generalized class e amplifier. IEEE Transactions on Circuits
and Systems, 37(8):1057–1060.

March, S. and Smith, G. (1995). Design and natural science research on informa-
tion technology. Decision Support Systems, 15(4):251–266.

Matic, N. (2001). Introduction to PLC controllers. mikroElektronika, Belgrade,
Serbia. Retreived October 28, 2004 from http://www.mikroelektronika.co.

yu/english/product/books/PLCbook/plcbook.htm.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions
on modeling and computer simulation, 8(1):3–30.

Meyer, B. (1992). Applying ”design by contract. IEEE Computer, 25(10):40–51.

Meyer, B. (1997). Object-oriented software construction. Prentice-Hall, New York:
NY, USA, 2nd edition.

Mitroff, I., Betz, F., Pondy, L., and Sagasti, F. (1974). On managing science in
the system age: two schemes for the study of science as a whole systems phe-
nomenon. TIMS interfaces, 4(3):46–58. Reprinted in Systems and Management
Annual, C. W. Churchman (ed.), 1975.

BIBLIOGRAPHY 195

Modicon (1996). Modbus protocol reference guide. Technical Report PI-MBUS-
300, Modbus-IDA. Rev. J.

Morris, D. (2003). Junit automates Java testing. IT Jungle, 2(22). Retreived
October 28, 2004 from http://www.itjungle.com/mpo/mpo110603-story01.

html.

Nance, R. E. (1981). The time and state relationships in simulation modeling.
Communications of the ACM, 24(4):173–179. Special issue on simulation mod-
eling and statistical computing.

Nance, R. E. (1995). Simulation programming languages: An abridged history. In
Alexopoulos, C., Kang, K., Lilegdon, W., and Goldsman, D., editors, Proceed-
ings of the 1995 Winter Simulation Conference, pages 1307–1313, Arlington:
VA, USA. IEEE.

Newell, A. and Simon, H. (1963). Gps, a program that simulates human thought.
In Feigenbaum, E. and Feldman, J., editors, Computers and Thought, pages 279
– 293. Mc Graw Hill.

Nutt, P. (2002). Why Decisions Fail. Berrett-Koehler Publishers, San Francisco:
CA, USA.

Ören, T. and Zeigler, B. (1979). Concepts for advanced simulation methodologies.
Simulation, 32(3):69–82.

Overstreet, C. and Nance, R. (1986). World view based discrete event model
simplification. In Elzas, M. S., Oren, T. I., and Zeigler, B. P., editors, Modelling
and Simulation Methodology in the Artificial Intelligence Era, pages 165–179,
Amsterdam, the Netherlands. North-Holland.

Page, E., Moose, R., and Griffin, S. (1997). Web based simulation in simjava using
remote method invocation. In A. Andrattotir, K.J. Healy, D. W. and Nelson, B.,
editors, Proceedings of the 1997 Winter Simulation Conference, Atlanta: GA,
USA. IEEE, ACM Press.

Papazoglou, M. and Dubray, J.-J. (2004). A survey of web service technologies.
Dit-04-058, Informatica e Telecomunicazioni, University of Trento, Trento, Italy.

Papazoglou, M. and Geogakopoulos, D. (2003). Service oriented computing. Com-
munications of the ACM, 46(10):25–28.

Roache, P. (1998). Verification and Validation in Computational Science and En-
gineering. Hermosa Publishers, Albuquerque: NM, USA.

196

Samson, D., Huibers, L., and Jacobs, P. (2004). Flexible assembly system - DSOL
specification. http://www.simulation.tudelft.nl/dsol/sne/publications/c2.pdf.

SAP (2004). management-cockit. Retreived October 21, 2004 from http://help.

sap.com/.

Schiess, C. (2001). Emulation: debug it in the lab — not on the floor. In Rohrer,
M., Medeiros, D., and Grabau, M., editors, Proceedings of the 33nd confer-
ence on Winter simulation, pages 1463–1465, Arlington: VA, USA. IEEE, ACM
Press.

Schludermann, H., Kirchmair, T., and Vorderwinkler, M. (2000). Soft-
commissioning: hardware-in-the-loop-based verification of controller software.
In Fishwick, P., Kang, K., Joines, J., and Barton, R., editors, Proceedings of
the 32nd conference on Winter simulation, pages 893–899, Orlando: FL, USA.
IEEE, ACM Press.

Seddon, P. (1997). A respecification and extension of the delone and mclean model
of is success. Information Systems Research, 8(3):240–253.

Shannon, R. (1975). Systems simulation: the art and science. Prentice-Hall,
Indianapolis: IN, USA.

Simon, H. (1955). A behavioral model of rational choice. Quarterly journal of
economics, 69:99–118.

Simon, H. (1976). From substansive to procedural rationality. In Latsis, S., editor,
Method and appraisal in economics, pages 129–149. Cambridge University Press,
Cambridge, UK.

Simon, H. (1977). Models of discovery, volume LIV. D. Reidel publishing company,
Dordrecht, the Netherlands.

Simon, H. (1996). The Sciences of the Artificial. MIT Press, Cambridge: MA,
USA, 3rd edition.

Sing, L. (2000). Professional Jini. Wrox Press Ltd., Birmingham, UK.

Sokal, N. and Sokal, A. (1975). Class e - a new class of high-efficiency tuned
single-ended switching power amplifiers. IEEE Journal of Solid-State Circuits,
SC-10(3):168–176.

Sol, H. (1982). Simulation in information systems development. PhD thesis, Ri-
jksuniversiteit Groningen, Groningen, the Netherlands.

BIBLIOGRAPHY 197

Sun Microsystems (2001a). Java logging apis. Retreived May 11, 2005 from http:

//java.sun.com/j2se/1.4.2/docs/guide/util/logging/.

Sun Microsystems (2001b). Java naming & directory interface apis. Retreived
May 25, 2005 from http://java.sun.com/products/jndi/docs.html#12.

Tarr, P. and Ossher, H. (2001). Workshop on advanced separation of concerns in
software engineering. In Müller, H. A., editor, Proceedings of the 23rd Inter-
national Conference on Software Engineering, pages 778–779, Toronto, Canada.
IEEE Computer Society.

TBA Nederland (2000). Tba nederland specialised in simulation of factories,
harbours, airports and railsystems. Retreived October 21, 2004 from http:

//www.tbanederland.nl/default.asp.

Tewoldeberhan, T., Verbraeck, A., Valentin, E., and Bardonnet, G. (2002). An
evaluation and selection methodology for discrete-event simulation software.
In Yucesan, E., Chen, C.-H., Snowdon, J., and Charnes, J., editors, Proceed-
ings of the 2002 Winter Simulation Conference, San Diego: CA, USA. IEEE,
ACM Press. Retreived October 21, 2004 from http://www.informs-cs.org/

wsc02papers/010.pdf.

Tsichritzis, D. (1997). The dynamics of innovation. Beyond calculation: the next
fifty years, pages 259–265.

van Duin, E. (2005). Making Opium more addictive. M.sc. thesis, Delft University
of Technology, Delft, the Netherlands. draft version.

van Wendel de Joode, R. (2005). Understanding open source communities. PhD
thesis, Technische Universiteit Delft, Delft, the Netherlands.

Vangheluwe, H. and de Lara, J. (2002). Meta-models are models too. In Yuce-
san, E., Chen, C.-H., Snowdon, J., and Charnes, J., editors, Proceedings of the
2002 Winter Simulation Conference, San Diego: CA, USA. IEEE, ACM Press.
Retreived October 21, 2004 from http://www.informs-cs.org/wsc02papers/

076.pdf.

Verbraeck, A. (2004). Real-time visualization and modeling of supply chains. In
Boyson, S., T.Corsi, and Harrington, L., editors, in real-time: managing the new
supply chain, chapter 7. Praeger Publishers, Westport: CT, USA.

Walls, J., Widmeyer, G., and Sawy, O. E. (1992). Building an information system
design theory for vigilant eis. Information Systems Research, 3(1):36–59.

198

Weisstein, E. (1999). Ode solving. Retreived November 24, 2004 from
MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/

topics/ODESolving.html.

Whorter, S., Baker, B., and Malan, G. (1997). Simulation system for control
software validation. In Proceedings of the 1997 SCS Simulation Multiconference,
Atlanta: GA, USA.

Wilson, R. and Keil, F. (1999). The MIT encyclopedia of the cognitive sciences.
Bradford Books, Cambridge: MA, USA.

Wirth, N. (1979). Algorithmen und datenstrukturen. Teubner Studienbücher,
Stuttgart, Germany.

Wood, D. (1992). Data structures, algorithms and performance. Addison-Wesley,
Boston: MA, USA.

Zeigler, B. (1976). Theory of modeling and simulation. Academic Press, San Diego:
CA, USA.

Zeigler, B. (1984). Multifacetted modeling and discrete event simulation. Academic
Press, London, UK.

Zeigler, B., Praehofer, H., and Kim, T. (2000). Theory of modeling and simulation.
Academic Press, San Diego: CA, USA, 2nd edition edition.

Zeigler, B. and Sarjoughian, H. (2005). Introduction to DEVS Modeling and
Simulation with JAVA: Developing Component-Based Simulation Models. Ari-
zona Center for Integrative Modeling and Simulation, draft version 3 edition.
Retreived March 22, 2005 from http://www.acims.arizona.edu/SOFTWARE/

devsjava_licensed/CBMSManuscript.zip.

BIBLIOGRAPHY 199

Author index

A

Aboulafia, M.. .10
Acton, G.S. 9
Aigner, M.. .12
Arnold, K. 71, 89
Ashby, R.. .35

B

Balci, O..53, 54, 78, 99
Banks, J. 56, 138
Bardonnet, G..5, 18
Barr, J. 1
Ben-Hamida, B. 128
Betz, F. 4
Birtwistle, G.M. 29, 54, 85
Blouin, F. 89
Booch, G. 37, 39, 44, 70
Bosman, A. .36
Boyson, S. 16–18, 23
Bracha, G. 71, 127
Brussaard, B.K. 36
Burden, R.L. 87
Burn, O. 126
Buxton, J.N. 54

C

Cai, W.. .23
Cardelli, L. 41
Carnap, R. 9
Chen, L. .23
Churchman, C.W..4, 36
Corré, A.D. .68
Corsi, T. 16–18, 23
Cournot, A.A. 2
Couture, R.. .89

D

Dahl, O-J. 38, 39
de Lara, J..13, 51, 58, 59

DeLone, W.H. 10
Deng, L.Y. 89
Denning, P.J. 10
Descartes, R. 9
Dick, B. 12
Dubray, J-J. 7, 57
Duhem, P.M.M. 10

E

Ecclesia, J.T. 15, 18
Eckel, B. 39, 42, 43, 65, 74
Ecuyer, P. see L’Ecuyer, P.
Eisenhardt, K.M. 12
El Sawv, O. 11

F

Faires, J.D. 87
Fishman, G.S. 49
Frolich, P. 128

G

Galliers, R.D. .11
Georgakopoulos, D. 7, 8
Gosling, J. 71, 89, 127

H

Healy, K.J. 66
Hegel, G.F. 4
Herman, K.J. 111
Hescott, C.J. 128
Hevner, A.R..10, 11
Hintikka, J. 9
Hlupic, V. 5, 18, 49
Hoare, C.A.R. 38
Holbaek-Hansen, E. 35, 37, 48
Holmes, D..71, 89
Hoschek, W.. .114
Huibers, L. 108
Hume, D. 9

200

J

Jacobs, J.P.M. 149, 164
Jacobs, P.H.M. 23, 66, 80, 82, 84, 98,

101, 108, 134, 149, 153, 164
Jacobson, I. 37, 39, 44, 70
James, W. 2
Janzen, D.. .126
Jose, D.P. 128
Joy, B.. .71, 127

K

Kant, I. 10
Kaufmann, R. 126
Kazi, I.H. 128
Keen, P.W.G..1, 5, 6, 36, 47, 60
Keil, F. .9
Kelton, W.D..55, 91, 94
Kilgore, R.A. 66
Kim, T. 13, 48, 51, 53, 58, 59, 74
Kirchmair, T.136, 138
Kiviat, P.J. 49
Klir, G.J..9, 35–37, 48, 50
Knuth, D.E. 88, 89
Koningsveld, H. 10
Konstan, J.A. 128
Kowk, C. 128
Kuljis, J. 65

L

L’Ecuyer, P. 65, 89
Lakatos, I. 10
Lang, N.A. .23, 80
Laski, J.G. 54
Law, A.M. 55, 91, 94
Lee, F.B.S..10, 23
Lee, R.C. 39
Lehmer, D.H. 89
Leibnitz, G.W.. .4
Lieberman, H. 43
Lilja, D.J. 128
Lindholm, T 82, 83

Link, J. 128
Lock, J. 4

M

Mandojana, J.C. 111
March, S.T. 10, 11
Matsumoto, M. 89
McLean, E. 10
Meyer, B. 38, 44
Mitroff, I.I. .4, 99
Morris, D. 128
Mulder, J.B.P..153

N

Nance, R.E. 13, 49, 54, 59
Newell, A. 9
Nishimura, T. 89
Nutt, P.C. 4
Nygaard, K. 38

O

Ören, T.I. .55, 56
Ossher, H. 38
Overstreet, C.M..54

P

Papazoglou, M.P. 7, 8, 57
Park, J. 10, 11
Paul, R.J. 65
Pirtle, B. 87
Pondy, L. 4
Popper, C.. .10
Praehofer, H.13, 48, 51, 53, 58, 59, 74

R

Ram, S. .10, 11
Rengeling, W. 134
Roache, P.J. 56, 99
Rumbaugh J. 37, 39, 44, 70

S

Sagasti, F. 4
Samson, D. 108

BIBLIOGRAPHY 201

Sandberg, K. 87
Sarjoughian, H.S. 65
Schiess, C.. .136
Schludermann, H..136, 138
Seddon, P.B. 10
Shannon, R.E. 4, 12, 47, 57
Simard, R.. .89
Simon, H.A. 2, 9, 10, 35–37
Sing, L.. .44
Singer, E.A. 4
Smith, G. 10, 11
Sokal, A.D. 111
Sokal, N.O. 111
Sol, H.G. . . . 1, 4–6, 36, 37, 47, 55–57,

59, 60, 99
Steele, G. 71, 127
Stein, L. 43

T

Tarr, P.. .38
Tas, P.A. 36
Tepfenhart, W.M. 39
Tewoldeberhan, T. 5, 18
Tsichritzis, D. 10

U

Unger, D.. .43

V

Valentin, E. 5, 18
van Duin, E. 161
Vangheluwe, H. 13, 51, 58, 59
Verbraeck, A.5, 16–18, 23, 24, 66, 80,

82, 84, 98, 134, 153
Vorderwinkler, M. 136, 138

W

Walls, J. .11
Wegner, P. 41
Weisstein, E.W. 88, 89
Widmeyer, G. 11
Wilson, R.A.. .9

Wirth, N.. .81
Wood, D. 81

X

Xu, H.. .89

Y

Yellin, F. 82, 83
Yew, P.C. 128

Z

Zeigler, B.P.12, 13, 48, 50, 51, 53, 55,
58, 59, 65, 74

Zulinski, R.E. 111

202

Subject index

A

abstract class . 74
acceptance see satisfactory level
accessibility. .43
activism . 9
activity scanning 54
actor . 48
Adams’ method. 89, 104
administrative sciences2
aggregation . 39
Air France. .153
Algol 60 . 38
Animator . 78, 180
Arena . 61, 154
asynchronous communication. .44, 70
Automod . 61

B

backdrop . 50
bad child . 43
behavior . 49
behavioral-science 10
Bernoulli distribution 91
Beta distribution 91
Binomial distribution 91
body of knowledge 35, 36
bureaucratic principle.43
business process 1

C

cancel measure 158
CERN. .114
Checkstyle. .126
class . 38, 40
classical economic theory 2
closed under coupling 53
Coad-Yourdon . 38
coercion . 41

COLT . 114
combined device 140
composite service 8
conceptual model 3
conceptualization 56
conceptualization freedom 58
conservative activism 10
Constant distribution 91
constantpool .82
construct . 11
control state . 81
control system 133, 138
control theory . 35
controlled system 138
conventionalism

see activism.9
cybernetics . 35

D

database tier . 19
dead reckoning 23
decision process . 1
delegation . 43
design . 11
design by contract 44
design-science. .10
DESS . 51, 87–88
DESSSimulator 78
DEVDESSimulator 78
DEVDESSSimulator 179
DEVS . 51, 78–81
DEVSSimulator 78
Discrete Constant distribution 91
distributed computing 19
domain of inquiry.35
DSOL. 63–98
dsol-gui service 68
dsol-xml service 68

BIBLIOGRAPHY 203

DTSS . 51
DX-120 generator89
Dycore . 133
dynamic class downloading 44

E

Eiffel . 45
eM-Plant . 61, 133
Empirical continuous distribution . 91
Empirical discrete distribution 91
empirical model .4
emulation . 133
encapsulation . 40
epistemological level 48
Erlang distribution 91
Euler’s method 89, 104
event . 50
event listener . 70
event producer.70
event project 70–74
event scheduling 53, 54
experiment.55, 56
experimental frame 48, 55
experimentation 57
expert validation 12, 57
exploration . 11
Exponential distribution 91
external validity 12

F

falsificationism. 9
formalism . 50
framestack. .84
framework for M & S 49
Frog navigation 26–33
Fusion . 38

G

Gamma distribution 91
general problem solver 9
general systems research 35
generalization. .12

Geometric distribution 91
Gill’s method 89, 104
Gisbeans . 149
good child . 43

H

hard coded . 24
Heun’s method 89, 104
horizontally layered . . . see subsystem

I

inclusion . 41, 42
inductivists . 9
information hiding 40
information theory.35
inheritance . 42
input device . 140
inquiring system 4
inquiry system . 4
instant . 50
instantiation . 11
interface . 45
interpretivism

see activism.9
interval . 50

J

Java interpreter.82
JNDI . 69
JUNIT testing128

K

Kantian . 10
KLM . 153–167

L

laboratory . 37
late binding . 44
linear congruential method.89
locality . 53
LogNormal distribution 91

204

M

maintenance measure 158
mathematical systems theory 35
Mersenne Twister.89
metatheoretical freedom 58
method . 11
methodology. .35
Milne’s method 89, 104
mock-up device 136
Modbus . 140
model . 11
model cycle . 4
modeling construct 50
modeling freedom.58
modifier . 40
modularity . 37
multi-channeling 19
multi-formalism 51
municipality of Rotterdam 26

N

Negative Binomial distribution. . . .91
neutrality. .12
non-stakeholders 47
Normal distribution.91

O

object . 38
object-orientation 38–39
observation see backdrop
ODE . 87
OMT. 38
OOSE . 38
operational plan 154
OPiuM . 153–157
output device.140
overloading . 41

P

parametric polymorphism.41
Park-A-Car . 26
passivism . 9

Pearson 5 distribution 91
Pearson 6 distribution 91
perceived problem 3
PLC. .134
Poisson distribution 91
portal tier . 18
probabilists . 9
problem solving.35
process . 50
process interaction.54, 81–86
Profiling .128
pseudo random number generators88–

91

R

rationality
procedural . 2
substantive . 2

real system . 36
RealtimeClock . 78
Red-Black binary tree 81
reflection. .45, 80
register . 139
replication . 55, 56
replicative validation.57
research approach 9–12
research instruments 9, 11
research philosophy 9
research strategy 9, 10
reserved measure 158
revolutionary conventionalism.10
Royal Dutch Airlines.see KLM
RPC . 19
run control .55, 56
Runge Kutta - Cash Carp method89,

104
Runge Kutta - Fehlberg method. .89,

104
Runge Kutta 3 method 89, 104
Runge Kutta 4 method 89, 104
runtime. .44

BIBLIOGRAPHY 205

S

satisficing level. .2
scheduled method invocation 80
schools of thought 9
scientific method.9
security. .18
sensory impressions 9
sensory observations 10
serializable . 71
service . 7, 57
service oriented architecture 7
service oriented computing 7
service oriented society 7
service providers 7
sheet piling floor.134
side loader .26
SimEvent . 71, 80
Simula. .38
Simula 1 see Simula
Simula 67 see Simula
simulation . 47, 48
simulation model 48
simulation time see system time
simulator 48, 74–78
SNE . 99–131
solution finding freedom 58
source system. .48
span . 50
specification . 56
stack swapping 82
stakeholders . 47
state . 49, 50
state transition 49
state-time relations 13
statistical distributions 91
structural validation 57
structure

dynamic . 49
static . 49

subscription.44, 70

subsystem . 37
subtype polymorphism . see inclusion
swap measure 158
system. .35
system time . 50
systems

engineering 35–37
sciences . 35

systems design. 35

T

TBA Nederland 133
theorem . 12
theory-laden . 9
timed event. .71
treatment. .55
Triangular distribution 91

U

UML . 39
Uniform distribution 91
USAF. 15–24

V

validation. .56
verification . 56
vertically partitioned. .see subsystem
visibility . 43

W

weak reference . 71
web service . 8
Weibull distribution 91
world view. .50

206

SUMMARY

In this thesis we argue that a new paradigm is needed for the design of decision
support systems to support unstructured decisions effectively and thus to support
human decision making with information technology.
To understand what is effective decision making, we introduce Simon’s concept
of procedural rationality. Simon (1976) states that it was only after the second
world war that classical economic theory was supplemented by a perspective on
economics that was based on procedural, or bounded, rationality. Classical eco-
nomic theory rests on two fundamental assumptions. One, the economic actor has
a well-defined particular goal. Two, the economic actor is substantively rational,
which by definition stipulates that the rationality of the behavior of the actor
depends on one aspect only: his or her goal.
Procedural rationality assumes that the concept of rationality is synonymous with
the peculiar thinking process called reasoning (James, 1890). According to Simon
(1976), behavior is procedurally rational when it is the outcome of appropriate
deliberation. Accepting procedural rational behavior therefore makes the process of
problem solving, or decision making, not a theory of best solutions, of substantive
rationality, but a theory of efficient activities, i.e. to find good, or accepted,
solutions (Simon, 1976).
The challenge now becomes to support the capriciousness of decision making, or
problem solving, by supporting N decision makers with M perceptions, P con-
straints and Q goals. In this support we distinguish the process, or method from
tools.
Sol (1982) presents simulation as a process, i.e. a method of inquiry, and advo-
cates that simulation is the preferred method of inquiry for ill-structured problems.
Simulation is defined as the process of designing a model of a real system and con-
ducting experiments with this model for the purpose of either understanding the
behavior of the system or of evaluating various strategies for its operation (Shan-
non, 1975). Simulation is thus a process to be supported by tools, i.e. decision
support systems.
A leading question in the development of such decision support systems concerns
the effectiveness of these systems. Keen and Sol (2005) argue that this effectiveness
can be expressed by a combination of three Us: usefulness, usability and usage.
The usefulness of decision support tools expresses the value they add to the deci-

sion making process. Usability expresses the mesh between people, processes and
technologies, and usage expresses the flexibility, adaptivity and suitability of DSSs
for organizational, technical, or social context. According to Keen and Sol (2005),
traditional decision support tools do not place equal emphasis on the three Us:
substantive rationality underlies their design.
Stressing all three Us equally results in the concept of decision support studios,
suites and services (Keen and Sol, 2005). A suite is a well chosen set of services
and recipes for inter-connectivity; a decision support suite is thus a chosen set of
services and recipes to support a decision making process. A studio is a (virtual)
environment in which suites are deployed, e.g. a group decision room or a web-
portal.
We argue that the concept of a suite is explicitly related to the service oriented
society we live in. The service oriented computing (SOC) paradigm, or service
oriented architecture (SOA), that underlies the design of modern information sys-
tems, represents this society in the design of information systems.
We now introduce the research question addressed in this thesis, which is based on
theories of studio based decision making and service oriented software engineering.

Research question: Can we create a simulation suite for decision
makers that supports a studio-based decision process and improves
their effectiveness when solving ill-structured, multidisciplinary prob-
lems?

A scientific inquiry may best be illustrated as following a particular process or
strategy in which a set of research instruments are employed and which is guided
by the researchers using an underlying research philosophy.
Although philosophers from both the active and passive schools of thought have
formed an underlying philosophy for organizational and information system re-
search, we postulate that systems engineering is a subjective human creation and
as such base our research on realistic activism, or revolutionary conventialism.
March and Smith (1995) present two strategies, or paradigms, for the design of
an information system: the behavioral science paradigm and the design science
paradigm. The behavioral science paradigm seeks to develop and justify theories,
i.e. principles and laws, that explain or predict organizational and human phe-
nomena surrounding the analysis, design, implementation, management and use
of information systems (Delone and McLean, 1992, 2003; Seddon, 1997). The de-
sign science paradigm has its roots in engineering and the sciences of the artificial
(Simon, 1996). It is fundamentally a problem-solving paradigm.
We agree with the arguments of Hevner et al. (2004), who argue that design science
and behavioral science should be engaged in a complementary research paradigm,
and postulate such a complementary, explorative research strategy for this re-
search. In this explorative strategy, behavioral science addresses research through

208

the development and justification of theories that explain or predict phenomena
related to an identified business need. Design science addresses research through
the building and evaluation of artifacts designed to meet the identified business
need.
The outline of this research reflects the explorative research strategy. Two ex-
plorative case studies are presented in chapter 2. In this chapter hypotheses are
conclusively refined to complete the initial phase of this research.
The concepts and theories of object-oriented system design are introduced in chap-
ter 3, which is concluded with a set of principles for object-oriented systems design.
In terms of the design science strategy, the object-oriented theories form the con-
structs; the principles form the methods.
We introduce several theories of modeling and simulation in chapter 4. The spec-
ification of the time-dependent behavior of a simulation model, i.e. the formalism
of a simulation model, forms the main concept discussed in this chapter. We follow
Vangheluwe and de Lara (2002), who argue that it is desirable to express the be-
havior of a model as a function of multiple formalisms. We conclude this chapter
with a set of requirements for a simulation suite.
The actual design, or instantiation, is presented in chapter 5. Here we present
our contribution to the field of systems engineering with the introduction of a
distributed Java-based Simulation Object Library (DSOL), and we discuss the
requirements, architecture and implementation of the DSOL suite. The suite
consists of several services among which the simulation core service, an asyn-
chronous event service, a logging service and a 2D and 3D animation service. The
DSOL suite is published under an open source license an can be downloaded from
http://www.simulation.tudelft.nl.
Verification and expert validation of DSOL is presented in chapter 6. The verifi-
cation of the suite is mainly based on the implementation of a set of comparisons
specified by Breitenecker (2004).
In chapters 7, named Emulation with DSOL and 8, named Flight scheduling at
KLM we present a validation of our hypotheses that DSOL contributes to more
effective decision support, based on the 3 Us. In both chapters real-life case studies
are presented in which we explicitly focus on one or more of the Us.
We present our conclusions and explore potential future research in chapter 9. We
conclude that by using DSOL usability is improved through the distributed web-
based access, the separation of the modeling environment and experimentation
environment, and the introduction of state-of-the-art software engineering tools.
Usefulness of the decision making process is improved through the availability of
several formalisms and well documented interfaces for domain specific libraries.
Usage is improved and supported through the intentional absence of proprietary
licenses, the absence of concealed parts in the architecture and a strong focus on

BIBLIOGRAPHY 209

the support of multiple actors.
We finish this thesis with the more general conclusion that a service based ap-
proach to software engineering has enabled us to design and specify a full featured
simulation suite, i.e. the DSOL suite. We strongly believe that DSOL, due to
its open source license, its current user community and its well documented and
open project management, will survive and go on to ’outlive’ this particular Ph.D.
thesis trajectory.

210

SAMENVATTING

De belangrijkste boodschap die in dit proefschrift, de DSOL simulatie suite, wordt
uitgesproken is dat een nieuwe kijk op, ofwel een nieuw paradigma voor, het ontwer-
pen van besluitvorming ondersteunende informatiesystemen meer dan wenselijk is.
Om te begrijpen hoe slecht gestructureerde besluiten effectief kunnen worden on-
dersteund introduceren we het concept van procedurele rationaliteit.
Simon (1976) beschrijft dat het tot na de tweede wereldoorlog heeft geduurd voor-
dat klassieke economische theorieën werden aangevuld met een perspectief van de
beperkte, ofwel procedurele, rationaliteit. Klassieke economische theorieën rusten
op twee belangrijke peilers. Op de eerste plaats gaan deze theorieën uit van een
economische actor met een duidelijk, eenduidig gedefinieerd doel. Op de tweede
plaats gaan deze theorieën uit van een actor die substantieel rationeel handelt,
hetgeen impliceert dat een actor slechts één doel nastreeft: zijn eigen.
Procedurele rationaliteit veronderstelt dat rationaliteit synoniem is met het proces
van redeneren (James, 1890). Simon (1976) stelt dat gedrag procedureel rationeel
is wanneer het resultaat is van een gedegen overleg proces. Procedurele ratio-
naliteit maakt het proces van probleem oplossen een proces van zoeken naar een
geaccepteerde oplossing in plaats van naar de beste oplossing. Een optimale oploss-
ing bestaat dan ook niet; we moeten zoeken naar haalbare, ofwel reële oplossingen.
We richten ons in dit proefschrift op het ondersteunen van besluitvorming in slecht
gestructureerde problemen. Problemen zijn over het algemeen slecht gestruc-
tureerd wanneer ze zowel inhoudelijk, bijvoorbeeld technisch, als organisationeel,
bijvoorbeeld door het groot aantal betrokken actoren, complex zijn. De vraag
luidt nu hoe de grilligheid van deze besluitvormingsprocessen te ondersteunen.
Hoe kunnen we met andere woorden N besluitvormers met M percepties, P rand-
voorwaarden en Q doelstellingen ondersteunen? Het is hierbij relevant het proces
van ondersteunen te scheiden van de hulpmiddelen, ofwel tools, die aangeboden
worden.
Sol (1982) beargumenteert dat simulatie een proces, een aanpak, ofwel een methode
van probleem oplossen is; hij stelt verder dat simulatie de verkozen aanpak is
wanneer we te maken hebben met het ondersteunen van besluitvorming van slecht
gestructureerde problemen. We definiëren simulatie volgens Shannon (1975) als
het proces van het ontwerpen van een model van een deel van de echte wereld met
het oogmerk met dit model te experimenteren. Het doel van simulatie is ofwel

de werking van een bestaand systeem te leren begrijpen ofwel nieuwe strategieën
voor besturing te evalueren (Shannon, 1975). Simulatie is dus een proces waarvoor
tools, ofwel hulpmiddelen, ontworpen worden.
Een belangrijke vraag in de ontwikkeling van dergelijke tools is hoe effectief ze zijn.
Hoe effectief is met andere woorden een simulatie tool, of omgeving, in vergelijk-
ing met zijn concurrerenten? Keen and Sol (2005) stellen dat deze effectiviteit
kan worden uitgedrukt als een functie van 3U’s: usefulness, usability en usage.
De usefulness, ofwel bruikbaarheid, van een besluitvormings ondersteunend infor-
matiesysteem drukt de waarde uit die een dergelijk systeem toegevoegd aan het
daadwerkelijke proces van besluitvorming. Is een systeem met andere woorden wel
bruikbaar voor het type probleem dat opgelost dient te worden? Usabilty, ofwel
gebruiksvriendelijkheid, drukt kwaliteit van de interactie tussen mensen, processen
en technologieën uit. Usage, ofwel gebruik, drukt de flexibiliteit, adaptiviteit en
sustainabiliteit van een dergelijk informatiesysteem in haar organisationele context
uit.
Keen and Sol (2005) beargumenteren dat er in het ontwerp van traditionele besluitvorm-
ings ondersteunende informatiesystemen niet aan iedere U evenveel aandacht is
geschonken. Waar sommige systemen duidelijk focussen op gebruiksvriendeli-
jkheid, ligt de aandacht bij andere op bruikbaarheid. Het onderliggende probleem
is dat substantiële en niet procedurele rationaliteit vaak de basis voor ontwerp is.
Keen and Sol (2005) komen, als gevolg van het benadrukken van alle U’s, met
een studio concept voor het ondersteunen van besluitvorming. Een studio is een
(virtuele) omgeving waarbinnen suites zijn gedeployed. Voorbeelden van studio’s
zijn een group decision room of een internet portal. Een suite is een geselecteerde
set van services en recepten voor inter-connectiviteit die de studio vullen. Een ser-
vice is gedefinieerd als de specificatie van een objectgeoriënteerde (sub)systeem dat
een coherente set van functionaliteit via een of meerdere interfaces, of contracten
aanbiedt.
We beargumenteren dat het concept van een suite, ofwel een set of services, direct
gerelateerd dient te worden aan de service georiënteerde maatschappij waarin we
leven. Deze maatschappij zien we in het ontwikkelen van informatiesystemen terug
in paradigma’s zoals service georiënteerde computing en service georiënteerde ar-
chitecturen. Met dit in het achterhoofd komen we tot de volgende vraag die we in
dit proefschrift pogen te beantwoorden.

Onderzoeksvraag: Kunnen we een simulatie suite ontwikkelen
voor besluitvormers die een studio gebaseerde aanpak van besluitvorm-
ing ondersteunt en hen hierdoor in staat stelt effectiever slecht gestruc-
tureerde problemen op te lossen?

Om te komen tot het beantwoorden van bovenstaande onderzoeksvraag is spec-
ifieke onderzoeksaanpak doorlopen waarin verschillende onderzoeksinstrumenten

212

zijn toegepast, en die een onderliggende wetenschapsfilosofie reflecteert. Beginnend
met de onderzoeksfilosofie zien we dat zowel de activistische als de passivistische
school ten grondslag liggen aan de ontwikkeling van informatiesystemen. Wij pos-
tuleren in dit onderzoek een realistisch activistische filosofie omdat systeemkunde,
ofwel systems engineering, hierin als een subjectieve menselijke activiteit wordt
gezien.
March and Smith (1995) presenteren vervolgens een tweetal aanpakken voor het
ontwerp van informatiesystemen: de gedragswetenschappelijke en de ontwerpweten-
schappelijke aanpak. De gedragswetenschappelijke aanpak tracht theorieën over
organisationele of menselijke fenomenen rondom het gebruik van informatiesyste-
men te verklaren of voorspellen (Delone and McLean, 1992, 2003; Seddon, 1997).
De ontwerpwetenschappelijke aanpak kent zijn wortels in de engineering en de
wetenschap van het artificiële (Simon, 1996); het is feitelijk een probleemoplossende
aanpak.
Wij sluiten ons aan bij Hevner et al. (2004), die stellen dat een gedragswetenschap-
pelijk en ontwerpwetenschappelijke aanpak deel zouden moeten uitmaken van een
complementaire aanpak. We stellen een dergelijke exploratieve aanpak dan ook
voor als leidraad voor dit onderzoek. In deze aanpak zullen de identificatie van
het probleem en de validatie van het ontwerp volgens een gedragswetenschappelijke
aanpak verlopen; het daadwerkelijke ontwerp van de suite zal volgens een ontwer-
pwetenschappelijke aanpak geschieden.
De opbouw van dit proefschrift weerspiegelt deze exploratievee aanpak. Twee
exploratievee case studies worden beschreven in hoofdstuk 2. Aan het eind van dit
hoofdstuk worden de onderzoeksvragen verfijnd.
Concepten en theorieën rondom systeemkunde en systeemontwerp staan beschreven
in hoofdstuk 3. Hier wordt een duidelijke slag gemaakt naar het ontwerp proces.
Dit hoofdstuk beschrijft objectoriëntatie als een wijze van systeem beschrijven en
presenteert een tiental principes voor het object georiënteerd systeemontwerp.
We presenteren de concepten rondom simulatie in hoofdstuk 4. De meta-modellen
voor de specificatie van het gedrag van simulatie modellen, ookwel formalismen
genaamd, staan hierin centraal. Hoofdstuk 4 borduurt voort op de ideeën van
Vangheluwe and de Lara (2002) die stellen dat het vaak wenselijk is een model als
functie van meerdere formalismen te conceptualiseren en dus te specificeren. In een
model worden dan bijvoorbeeld zowel discrete events, bijvoorbeeld aankomende
passagiers, als continue functies, bijvoorbeeld afremmende voertuigen, gespeci-
ficeerd. Vandaar ook de subtitel van dit proefschrift: het ondersteunen van multi-
formalisme simulatie.
De waarde van dit proefschrift komt tot uiting in het ontwerp dat beschreven
is in hoofdstuk 5. Hier presenteren wij onze bijdrage aan het domein der sys-
teemkunde met de introductie van een gedistribueerde, Java-gebaseerde Simulatie

BIBLIOGRAPHY 213

Object Library (DSOL). We bespreken in dit hoofdstuk de ontwerpeisen, de archi-
tectuur van DSOL en de uiteindelijke implementatie van deze architectuur. DSOL
bestaat uit een negental services waaronder een simulatie service, een service voor
gedistribueerde asynchrone communicatie, een service voor 2-dimensionale en 3-
dimensionale animatie, een statistiek service, etc. DSOL is gepubliceerd onder een
open source software licentie. Dit betekent grofweg dat iedereen mag en kan doen
met de software zoals hem/haar betaamt. DSOL is gepubliceerd op de volgende
internet site: http://www.simulation.tudelft.nl
De verificatie en expert validatie van DSOL staan beschreven in hoofdstuk 6. In
hoofdstuk 7 en 8 presenteren we vervolgens de validatie dat DSOL daadwerkelijk
bijdraagt aan meer effectieve besluitvorming. In deze hoofdstukken staan real-life
case studies beschreven die uitgevoerd zijn bij Dycore, een organisatie in Breda die
zich toelegt op de productie van betonnen vloeren, en bij de KLM. In beide case
studies focussen we op een of meerdere specifieke U’s en laten we zien hoe DSOL
zich in het ondersteunen van besluitvorming verhoudt tot bestaande simulatie
omgevingen.
We presenteren onze conclusies en aanbevelingen voor verder onderzoek in hoofd-
stuk 9. De belangrijkste conclusie is dat we met DSOL inderdaad een omgeving
aanbieden die effectievere besluitvorming tot stand brengt. We concluderen dat we
de Usability van een simulatie omgeving met DSOL daadwerkelijk hebben vergroot.
De voornaamste redenen zijn het web georiënteerd karakter van DSOL, het schei-
den van een modelleeromgeving van een experimenteeromgeving en de introductie
van state-of-the-art software tools in het domein van de simulatie. De Usefulness
is eveneens tastbaar toegenomen. De belangrijkste reden, is het multi-formalismen
denken. In DSOL kunnen modellen in meerdere formalismen gespecificeerd wor-
den; de conceptuele blauwdruk die besluitvormers van een probleem hebben kan
één-op-één vertaald worden naar een DSOL simulatiemodel. Verder is DSOL een
open omgeving waarin het gebruik van externe bibliotheken, door het gebruik van
contracten, ookwel interfaces genaamd, goed ondersteund wordt. Usage is tot slot
beter ondersteund door het ontbreken van een gesloten licentie, het ontbreken van
afgesloten delen in de code en een sterke focus op het ondersteunen van meerdere
actoren.
We besluiten dit proefschrift met een meer algemene conclusie dat een service
georiënteerde kijk op software ontwikkeling ons in staat heeft gesteld in een beperkte
tijd te komen tot het ontwerp, de implementatie en het testen van een volledige
simulatie omgeving. We zijn er tot slot stellig van overtuigd dat DSOL, gezien de
open source licentie, een aanwezige gebruikers gemeenschap en een gestandaardis-
eerde project management omgeving, de duur van deze promotie zal overleven.

214

ABOUT THE AUTHOR

Nederlands (Dutch)

Peter Jacobs is geboren op 8 mei 1975 te Utrecht. Hij is opgegroeid in Heerlen
alwaar hij in 1993 zijn eindexamen Gymnasium deed aan het Bernardinus college.
In 1993 begon hij aan de studie Chemische Technologie aan de Technische Univer-
siteit Delft. Na een jaar als voorzitter van Delft’s grootste studentenvereniging,
vervolgde hij zijn studie aan de faculteit der Technische Bestuurskunde; aldaar
ontving hij eind 2001 zijn ingenieursdiploma.
Gedurende deze Delftse jaren was Peter bestuurslid in verscheidene studenten or-
ganisaties en stond hij aan de voet van Javel b.v., een bedrijf dat zich toelegt op
de ontwikkeling van geografische informatie systemen. Het onderwerp van zijn af-
studeerstage, verricht in het iForce Ready Center van Sun Microsystems in Menlo
Park, Californië (USA), was getiteld ’Distributed components in a visualization
environment’. Peter ving 1 Januari 2002 aan met zijn promotie. Gedeeltes van dit
werk zijn gepresenteerd in in San Diego (CA, USA, 2002), Bled (Slovenië, 2003),
Sophia Antipolis (Frankrijk, 2003), Seoul (Korea, 2003), Hong Kong (China, 2003),
Delft (Nederland, 2003), Cambridge (UK, 2004) and Washington (USA, 2004). Pe-
ter heeft gedurende zijn promotie meer dan 15 studenten begeleid in het behalen
van hun ingenieursdiploma.

English (Engels)

Peter Jacobs was born on May 8, 1975 in Utrecht, but was raised in the far south
of the Netherlands, in Heerlen. In 1993, he obtained his Gymnasium certificate at
the St. Bernardinus college in Heerlen. He started his studies at Delft University of
Technology at the faculty of Chemical Engineering. After being president of Delft’s
largest students’ association, he decided to continue his studies at the faculty of
Systems Engineering, Policy Analysis and Management; he earned a M.Sc. degree
in October 2001. During his stay in Delft, he was on the committee of several
student associations and started Javel, a business focused at the development of
geographical information systems. The topic of his Master’s thesis, written in
the iForce Ready Center of Sun Microsystems in Menlo Park, California (USA),
was titled ’Distributed components in a visualization environment’. He started
his Ph.D. research on January 1, 2002. The result of this research is presented in

this thesis. Part of the work was presented in San Diego (CA, USA, 2002), Bled
(Slovenia, 2003), Sophia Antipolis (France, 2003), Seoul (Korea, 2003), Hong Kong
(China, 2003), Delft (Netherlands, 2003), Cambridge (UK, 2004) and Washington
(USA, 2004). Peter has supervised more than 15 Ms.S students thoughout his
Ph.D. trajectory.
(van Wendel de Joode, 2005) (Fujimoto, 2000) (Daum and Horak, 1999) (Briggs
et al., 2003)

216

	The DSOL simulation suite. Enabling multi-formalism in a distributed context
	Contents
	ACKNOWLEDGMENTS
	1. EFFECTIVE DECISION SUPPORT
	1.1 Introduction
	1.2 Human decision making and problem solving
	1.3 Simulation as a method of inquiry
	1.4 Effectiveness of decision support systems
	1.5 A generation of systems supporting substantive rationality
	1.6 A simulation suite to support bounded rationality
	1.7 Research approach
	1.8 Research outline

	2. SIMULATION IN PRACTICE
	2.1 Case 1: The net-centric supply chain
	2.2 Case 2: Controlling automated guided vehicles
	2.3 Research question revised

	3. SYSTEMS ENGINEERING PRINCIPLES
	3.1 Systems engineering
	3.2 Principles for system design
	3.3 Object-oriented system description
	3.4 Principles for object-oriented modeling
	3.5 Summary

	4. SIMULATION AS A METHOD OF INQUIRY
	4.1 Actors and activities in a simulation study
	4.2 A framework for simulation
	4.3 Multi-formalism modeling
	4.4 Three classical formalisms for discrete event simulation
	4.5 Experimental design
	4.6 Activities involved in a simulation study
	4.7 Requirements for a simulation suite
	4.8 Requirements worked out
	4.9 Summary

	5. DESIGNING A SIMULATION SUITE
	5.1 Distribution forms the core of DSOL
	5.2 Choosing an object-oriented programming language
	5.3 An overview of Java based simulation environments
	5.4 Overview of the DSOL simulation suite
	5.5 Specification of distributed asynchronous communication
	5.6 Specification of formalisms
	5.7 Specification of statistical distribution functions
	5.8 Specification of output statistics
	5.9 Specification of animation
	5.10 Summary

	6. VERIFICATION AND TESTING OF DSOL
	6.1 Expert verification through the SNE comparisons
	6.2 Testing and analyzing the DSOL suite
	6.3 Conclusions

	7. CASE: EMULATION WITH DSOL
	7.1 Introduction
	7.2 Conceptualization
	7.3 Specification

	8. CASE: FLIGHT SCHEDULING AT KLM
	8.1 Introduction
	8.2 Conceptualization
	8.3 Specification
	8.4 Conclusions

	9. EPILOGUE
	9.1 A review of research questions
	9.2 The DSOL user community

	APPENDIX
	BIBLIOGRAPHY
	Author index
	Subject index
	SUMMARY
	SAMENVATTING
	ABOUT THE AUTHOR

