
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

FLIGHT SCHEDULING AT KLM

Peter H.M. Jacobs
Alexander Verbraeck

Department Technology, Policy and Management
Delft University of Technology
P.O. Box 5105, 2600GA Delft

THE NETHERLANDS

Jeroen B.P. Mulder

Department of Decision Support,
Corporate Information Office

KLM, P.O. Box 7700, Luchthaven Schiphol
THE NETHERLANDS
ABSTRACT

We present a specification of the optimization of KLM’s
flight schedule in this paper using object-oriented simula-
tion services on top of the Java-based distributed simulation
environment DSOL. The paper shows the added value of
a service-based architecture for linking the simulation of
KLM’s operations, the operational modules for day-to-day
flight optimization, the interfaces to input data, and the out-
put visualization tools. All services are loosely coupled to
the other services. The contracts as defined in the interfaces
of the services allow for easy extensions of the functionality
of for instance the optimization modules, without the need
for making changes in other places of the model. Links
to external data sources can also be easily provided. In
the project, it was clearly demonstrated that the usefulness,
usability, and usage of the distributed, service-based archi-
tecture for KLM is much higher than earlier implementations
of their simulation-based optimization models.

1 INTRODUCTION

Royal Dutch Airlines, or KLM, is the Netherlands’ largest
airliner and as such one of the largest in Europe; it was
founded in 1919 and since then it has experienced constant
growth. In the fiscal year 2003/2004, KLM employed 34.529
people and maintained a fleet of 188 aircrafts (KLM 2004).
KLM executes a schedule connecting over 400 cities in 85
countries on 6 continents. More than 23 million passengers
and some 529,000 tons of freight were transported over their
network in 2003/2004 (KLM 2004). KLM has recently
merged with Air France; the new airline is the biggest in
Europe and number three in the world.

KLM adapts its flight schedule at least four times per
year to accommodate changes in demand. Schedules are
developed by the Network department, a business unit with
a strong commercial focus, whose main interest is to maxi-
mize profit by maximizing the number of passengers, flights,
and flight connections. Within KLM, Operations Control is
299
the business unit responsible for operating the schedule. Its
interest lies in executing a feasible schedule which implies
less passengers and fewer flights. A sub department of
Operations Control, called Plan Acceptance Management,
assesses the feasibility of a new schedule, and reports to
Operations Control on whether to accept it. Due to opposing
interests of Network and Operations Control, objectivity and
rationality in the plan acceptance process are highly valued.
To achieve such rationality, the decision support department
of KLM was requested to develop a simulation model that
would support gaining insight into the operational conse-
quences of a new flight schedule. This simulation model,
delivered in 2003, and specified in Arena, is called OPiuM,
and is used ever since. The name OPiuM comes from the
abbreviation OPM for Operational Plan Management, the
KLM department name of the client of the project.

This model reflects KLM’s philosophy of evaluating
individual business units based on their performance in the
execution of sub-processes. The process of an individual
plane is divided into four sub-processes, which are referred
to as process building blocks and are presented in Figure 1.
A department responsible for the execution of a sub-process
is called a capacity service provider. KLM’s management
made capacity service providers individually responsible
for measuring service time distributions, for their building
block.

All flights of a schedule are simulated in OPiuM. Dis-
turbances in OPiuM are the result of the difference between
a value drawn from a statistical distribution and a scheduled
process time. The statistical distributions used in OPiuM are
based on the service time distributions, provided by the ca-
pacity service providers. Whenever there is a disturbance in
the simulated schedule, OPiuM optimizes the remainder of
the schedule by evaluating a number of potential measures.
Such measures include accepting the disturbance, swapping
planes and canceling the flight. Penalties, awarded to all
these measures, are used to evaluate the remainder of the
schedule.

Jacobs, Mulder, and Verbraeck

BB
1:

 fl
yi

ng

BB
2:

 a
rr

iv
al

BB
3:

 id
le

BB
4:

 d
ep

ar
tu

re
kk

Figure 1: KLM’s Process Building Blocks
Although the current specification of OPiuM in Arena is
considered to be a great success - managers and employees
must be constantly warned not to over trust the outcome
of the model - KLM believed there was added value to
be obtained from a renewed specification of the OPiuM
model in DSOL. DSOL is a Java based, open source, sim-
ulation suite developed by Delft University of Technology
(Jacobs, Lang, and Verbraeck 2002).

2 WHY A RENEWED SPECIFICATION IN DSOL?

The challenges noticed by KLM with respect to the use-
fulness, usability and usage of their current specification of
OPiuM forms the topic of this section.

One of the most noticeable problems was that while the
optimizer requires operations research strategies to deliver
the required output, Arena is clearly not designed for such
algorithmic specifications. As a result OPiuM is mostly
specified in Microsoft Visual Basic and Arena is, besides
providing an event calendar and thus the simulated time,
almost circumvented as a simulation language.

Another problem is Arena’s model execution environ-
ment. Although OPiuM was developed by highly educated
simulation experts, the users of OPiuM, i.e. employees of
Plan Acceptance Management, are not highly educated in
this area, and while they are experts in the domain of flight
scheduling, the execution and development environment of
Arena is considered to be too complex and as such lacks
usability qualities for those that must use it.

Due to Arena being non-standard software at KLM,
and because of the complicated structure and deployment
of Arena licenses, in addition to the specific versions of the
libraries used to accomplish the interaction between Arena
and MicrosoftVisual Basic, the Decision Support department
developed OPiuM and by default became responsible for
its installation, maintenance and service for end-users.

Arena does not provide any support for the collabo-
rative model specification, nor does it provide support for
distributed, concurrent model execution.

Arena is difficult to integrate with external distributed
data sources. Since capacity service providers must in-
dividually publish service times, support for integrating
information would be very much appreciated.
300
An overall conclusion with respect to the current spec-
ification in Arena was that KLM foresees that usage of
OPiuM may well shift to a more operational mode, in
which daily problems are evaluated, if the current specifi-
cation has not reached its limits with respect to scalability
and performance.

3 CONCEPTUALIZATION

We will now introduce the conceptual diagrams of the case,
to provide insight into the processes of executing a flight
schedule. If a flight is delayed, Operations Control can take
several measures to optimize the remainder of the schedule.
To evaluate the consequences of a potential measure, a
value function is assigned to each measure, expressing a
sanction, in minutes delay, for a particular flight, at a
particular moment in time. The following measures are
used in the model.

Swapping two fleetlines: one of the measures is to swap
two fleetlines. A fleetline is the sequence of flights scheduled
during the schedule period to be performed by one aircraft.
Swapping fleetlines implies that the scheduled flights for a
particular plane for the remainder of the rotation are swapped
with those scheduled for an alternative plane. A rotation is
the sequence of flights from Schiphol to Schiphol. Usually
this involves two flights, or legs, but sometimes it involves
three or more. The swap measure is illustrated in Figure 2.
If a delay causes time pressure, and thus an inevitable delay,
on the next flight, swapping a rotation between two planes
may well be a rational measure to take. Swaps are only
performed at Schiphol airport and preferably between two
planes of the same sub type. This is called a registration
swap. Only if such plane is not available, are planes of
another type considered. The sanctions for this measure
are expressed in minutes and based on the differences in
passenger capacity of the aircrafts involved and on the crew
related cost consequences. There is a base sanction plus a
leg-sanction for every swapped leg, except for registration
swaps, where only the base sanction applies.

Using a reserved aircraft: this is an aircraft that is kept
idle for a longer period of time (several hours to days). A
reserved is used to schedule a standby aircraft and crew,
which are only used whenever a problem in the schedule
occurs. When a flight must be executed but the originally

Jacobs, Mulder, and Verbraeck

time pressure

Amsterdam

kk

kk

Amsterdam

Figure 2: Swapping Two Fleetlines
assigned aircraft is unavailable a reserve aircraft may be
used. The sanction and value function of a reserve are equal
to the swap measure.

Reducing maintenance time: maintenance can be short-
ened by approximately 15% of the regular maintenance time
by increasing the amount of assigned resources, i.e. engi-
neering staff and equipment. The sanction for this measure
depends on the type of airplane.

Canceling a flight: a cancel-measure implies that an
entire rotation is canceled, i.e. it will not be executed. The
sanction is evaluated per leg and is very high, which is not
surprising since cancelation is the most radical solution.

Operations Control is responsible for the execution of
flights and thus for the optimization of the schedule. A
sequence diagram of this executeFlight operation is
presented in Figure 3.

The following characteristics of this sequence diagram
are worth discussing. One, on the execution of a flight,
an external optimizer is requested to optimize the sched-
ule. Two, this optimizer is defined as an interface. By
using an interface, we adhere to the principle of design
by contract and as such emphasize on a loosely coupled
relation, i.e. we place the emphasize on the replaceability
of a particular implementation. A domain specific, propri-
etary, external service can easily be used to do the actual
optimization. Three, the actual execution is implemented in
the Aircraft which adheres to the principle of separation
of concerns.

Although the use of an external, well validated optimizer
is encouraged, a reference implementation of the interface is
presented in Figure 4. The following characteristics of this
implementation are worth discussing. One, the optimizer
has no relation with the DSOL simulator. This ensures
that the algorithm used to optimize a flight schedule can
be shared between the simulation model, i.e. OPiuM, and
the information systems supporting daily flight execution.
The value of this openness is that the optimizer can be
used for the simulation model, i.e. OPiuM, as well as
for the information systems used by Operations Control in
their daily work. It furthermore opens the door of using
OPiuM in a more operational daily environment. Two,
measures follow a transaction model, which supports an
initial try and a final perform. Three, both value functions
assessing the consequences of individual measures and the
301
reference time providers, i.e. NormTimeProvider are
interfaces that emphasize on the replaceability of a particular
implementations.

The actual execution of a flight is the responsibility
of an aircraft, see the sequence diagram of Figure 3. The
Aircraft class is presented in Figure 5. The following
characteristics are presented in this Figure. One, static
parsing methods in both the Aircraft and the SubType
directly parse the Flash schedule presented in Figure 6
(Flash is the name of the KLM proprietary software used to
develop flight schedules.). Two, the State class represents
the states reflecting the sub-processes of an plane. The
sequence is specified in the nextState operation.

KLM’s schedule is conceptualized in Figure 7. The
Fleetline holds a number of FlightLists each holding a
number of Flights. DSOL’s event package enables flights
to fire events whenever a delay is incurred, and to compute
the performance indicators of a schedule, DSOL’s statistical
objects are asynchronously subscribed to these events.

4 SPECIFICATION

We present the specification of the OPiuM model in DSOL
in this section. We merely introduce those aspects that are
relevant for understanding the extent to which the DSOL
specification of OPiuM differs from the prior OPiuM model
specification in Arena.

4.1 Input Specification

DSOL supports input and output of the Flash file format
to ensure that the usability of OPiuM and Flash for the
end-user is not affected.

Although capacity service providers publish service
times individually and autonomously, Decision Support is
currently obliged to download such information and to ex-
port it into Microsoft Access files which can be read by
Arena. The DSOL specification of OPiuM supports both
the Microsoft Access, and any remote text-based proprietary
document format. As a consequence updated information
can be automatically downloaded over ftp, http or nfs.
Java’s JDBC and JNDI standards further result in support
for remote relational and directory-based databases. This
support is illustrated in the model definition of the exper-

Jacobs, Mulder, and Verbraeck
Default actor

this : OperationsControl fleetline : Fleetline aircraft : Aircraft optimizer : OptimizerInterface flight : Flight simulator : DEVSSimulatorInterface

executeFlight(Flight): void
getSimulatorTime(): double

optimize(Collection,double): Collection

addListener(EventListenerInterface,EventType): boolean

addListener(EventListenerInterface,EventType): boolean

getFleetline(Collection): Fleetline

getAircraft(): Aircraft

execute(Flight): void

Figure 3: Sequence Diagram of the ExecuteFlight Operation

 DefaultOptimizer(valueFunction, normTimeProvider, measures)

 DefaultOptimizer(valueFunction, normTimeProvider)

 determineProblem(fleetlines, currentTime): Flight

 getNormTimeProvider(): NormTimeProviderInterface

 getValueFunction(): ValueFunction

 optimize(fleetlines, currentTime): Collection

DefaultOptimizer

 optimize(fleetlines, time): Collection

OptimizerInterface

 getNormTime(aircraft, nextFlight): double

nl.klm.cafeine.flight.normTimes.NormTimeProviderInterface

 getSanction(measure, solution): double

 getSanction(problem, fleetlines, time): double

nl.klm.cafeine.flight.optimizer.values.ValueFunction

 ~ normTimeProvider

0..1

 ~ valueFunction

0..1

Figure 4: A Reference Implementation of the OptimizerInterface
iment definition presented in Figure 8. The connection
arguments for connecting to a remote database, e.g. Mi-
crosoft Access or Oracle, are supplied in the text based
database.properties file.

4.2 Output Specification

The DSOL specification of OPiuM supports a number
of output modes. Besides charts and Microsoft Excel
files, the DSOL specification of OPiuM supports anima-
tion on top of a geographical information system, i.e. Gis-
beans (Jacobs and Jacobs 2004). Several characteristics of
DSOL’s animation capabilities are presented in Figure 9.
302
DSOL supports multiple, remote animation screens
which are concurrently subscribed to the simulation model.
This validates the value of DSOL’s strong support for remote
asynchronous communication. It furthermore validates the
value of a loosely coupled, pull-based approach to anima-
tion.

The geographical information system, Gisbeans, sup-
ports layered based rendering; detailed information is only
shown at detailed zoom levels. The animation of the planes
is state dependent, i.e. the actual delay is represented under
the plane. Clicking on a specific plane enables users to drill
down and actually to get operational insight into the status
of the plane, e.g. the position and the estimated delay.

Jacobs, Mulder, and Verbraeck
AIRCRAFTSUBTYPES: Map

BUSINESS_CLASS: short

ECONOMY_CLASS: short

subType: String

standardTurnTime: double

 getPaxConfig(index): int

 isMemberOfFamily(familyName): boolean

 toString(): String

 parseAircraftTypes(flashFile)

Subtype

IN_MAINTENANCE: State

IN_REPAIR: State

IN_AIR: State

LOADING: State

UNLOADING: State

IDLE: State

RESERVE: State

value: short

 toString(): String

 nextState(state): State

State

 getProcessTime(aircraft): double

nl::klm::cafeine::flight::processTimes::ProcessTimeProviderInterface

unitNumber: String

 execute(flight)

 getBounds(): Bounds

 getFlight(): Flight

 toString(): String

 parseAircrafts(simulator, flashExcelFile, processTimeProvider, normTimeProvider)

 Aircraft(simulator, subtype, unitNumber, processTimeProvider, normTimeProvider)

Aircraft

 - processTimeProvider0..1

 ~ state0..1

 ~ subtype0..1

Figure 5: Class Diagram of Aircraft
5 CONCLUSIONS

We will now evaluate the current specification and the extent
to which we have accomplished the requirements presented
in section 2. The first requirement was to overcome the
circumvention of the simulation language to specify the
algorithms of schedule optimization. Without further elab-
oration, we may well conclude that using the Java program-
ming language for the specification of the model fulfills this
requirement. The open architecture of DSOL furthermore
prevents a doubtful boundary between parts that are avail-
able to designers and parts that are shielded. DSOL for
example provides full access to the event list of the discrete
simulator.

A second requirement was to distinguish end-users from
simulation model builders and to target specific support envi-
ronments for their tasks. In DSOL, model builders are sup-
303
ported with state-of-the-art software engineering tools such
as an integrated development environment, e.g. Eclipse, and
a Java project management tool, e.g. Maven. End-users
are supported with a web-portalled environment which is
tailored for specific usage.

A third requirement was to deliver a suite of KLM
standard information system services that allowed KLM’s IT
department to take responsibility for and control installation
and end-user support. Since KLM has standardized all in-
house developments in the Java programming language,
we may well conclude that our specification fulfills this
requirement.

The fourth requirement was that the decision support
department should be supplied with tools that could meet a
need to support collaborative model specification. This case
taught KLM how to use a concurrent versioning system to
synchronize changes on a central model repository.

Jacobs, Mulder, and Verbraeck
Figure 6: A Schedule as Viewed with Flash
 FlightList()

 get(index): Flight

 getIndex(flight): int

 nextFlight(previous): Flight

 previous(current): Flight

FlightList

Fleetline

DELAY_EVENTS: EventType

 Flight(simulator, flightNumber)

 clone(delay): Flight

 getActualTimeArrival(): double

 getActualTimeDeparture(): double

 getAircraft(): Aircraft

 getDestination(): Airport

 getEstimatedTimeArrival(): double

 getEstimatedTimeDeparture(): double

 getFleetline(fleetlines): Fleetline

 getFlightNumber(): String

 getOrigin(): Airport

 getRegion(): short

 getScheduledTimeArrival(): double

 getScheduledTimeDeparture(): double

 setActualTimeArrival(time)

 setActualTimeDeparture(time)

 setEstimatedTimeArrival(time)

 setEstimatedTimeDeparture(time)

Flight

 ~ flights0..1

«use»

Figure 7: Class Diagram of Fleetline
Java is a general purpose programming language de-
signed for a networked, distributed environment. The DSOL
30
specification of OPiuM makes use of libraries to connect to
external databases, in-memory databases, directory services
4

Jacobs, Mulder, and Verbraeck
<model>
<model-class>nl.klm.cafeine.model.Model</model-class>
<class-path>

<jar-file>http://www.simulation.tudelft.nl/airfields.jar</jar-file>
<jar-file>ftp://anonymous:klm@ftp.klm.com/pub/data.jar</jar-file>
<jar-file>file:/C:/development/cafeine/world.jar</jar-file>

</class-path>
</model> <properties>

<property key="DATABASE_PROPERTIES" value="/database.properties"/>
</properties>

Figure 8: Experimentation in the DSOL Specification of OPiuM

Figure 9: Animation in the DSOL Specification of OPiuM
and remote files over any network protocol, e.g. ftp or http.
A diagram showing the fulfilment of the requirement to link
to external data sources is presented in Figure 8.

A general over reaching conclusion is that, from our
perspective, the DSOL implementation has yet to reach its
limitations with respect to scalability and performance. The
possibilities to not animate, and to distribute execution over
multiple processors, support our strong conviction that the
DSOL specification is well equipped to serve more opera-
tional, daily processes, however more research is required
to support this.
305
6 OBTAINING THE SOFTWARE

DSOL is published under the General Public License.
More information on the license can be found at
<http://www.gnu.org/copyleft/gpl.html>.
The DSOL project description can be found at
<http://www.simulation.tudelft.nl>
and the software can be downloaded from
<http://sourceforge.net/projects/dsol/>

REFERENCES

Jacobs, J., and P. Jacobs. 2004. Gisbeans: a
Java library for geographical information systems.

<http://www.gnu.org/copyleft/gpl.html>
<http://www.simulation.tudelft.nl>
<http://sourceforge.net/projects/dsol/>

Jacobs, Mulder, and Verbraeck
Retreived October 21, 2004 from <http://
gisbeans.sourceforge.net>.

Jacobs, P., N. Lang, and A. Verbraeck. 2002. A dis-
tributed Java based discrete event simulation archi-
tecture. In Proceedings of the 2002 Winter Sim-
ulation Conference, ed. E. Yucesan, C.-H. Chen,
J. Snowdon, and J. Charnes, 793–800. San Diego:
CA, USA: IEEE: ACM Press. Retreived October
21, 2004 from <http://www.informs-cs.org
/wsc02papers/102.pdf>.

KLM 2004. KLM, annual report 2003/2004.
Retreived October 21, 2004 from
<http://www.klm.com/corporate_en>.

AUTHOR BIOGRAPHIES

PETER H.M. JACOBS is a Ph.D. student at Delft Uni-
versity of Technology. His research focuses on the design
of simulation and decision support services for the web-
enabled era. His working experience within the iForce
Ready Center, Sun Microsystems (Menlo Park, CA), and
engineering education at Delft University of Technology
founded his interest for this research. His e-mail address
is <p.h.m.jacobs@tbm.tudelft.nl>.

JEROEN B.P. MULDER is a consultant at the department
Decision Support of KLM’s Corporate Information Office.
As a Decision Support consultant he designs, develops and
applies (new) Decision Technology systems in a scien-
tific econometric, and information technology perspective
and judges the integration of these systems in the KLM’s
IT infrastructure and organization. His email address is
<jeroen.mulder@klm.com>.

ALEXANDER VERBRAECK is chair of the Systems
Engineering Group of the Faculty of Technology, Policy
and Management of Delft University of Technology, and
a part-time full professor in supply chain management at
the R.H. Smith School of Business of the University of
Maryland. He is a specialist in discrete event simulation for
real-time control of complex transportation systems and for
modeling business systems. His current research focus is on
development of open and generic libraries of object oriented
simulation building blocks in Java. Contact information:
<a.verbraeck@tbm.tudelft.nl>.
306

http://gisbeans.sourceforge.net
http://gisbeans.sourceforge.net
http://www.informs-cs.org/wsc02papers/102.pdf
http://www.informs-cs.org/wsc02papers/102.pdf
<http://www.klm.com/corporate_en>
<p.h.m.jacobs@tbm.tudelft.nl>
<jeroen.mulder@klm.com>
<a.verbraeck@tbm.tudelft.nl>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

